NAACL2001

Chunking with Support Vector Machines

Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN

> Taku Kudo, Yuji Matsumoto {*taku-ku,matsu*}@*is.aist-nara.ac.jp*

Chunking (1/2)

Dividing sentences into syntactically related non-overlapping groups

- Example of BaseNP chunking:

```
In [ early trading ] in
[ Hong Kong ] [ Monday ] , [ gold ] was
...
```

- Example of Base Phrase chunking:

```
[ In ]/PP [ early trading ]/NP [ in ]/PP
[ Hong Kong ]/NP [ Monday ]/NP , [ gold ]/NP [ was ]/VP
```

```
• • •
```

Chunking (2/2)

Other Chunking Tasks:

- Named Entity extraction
- Japanese bunsetsu identification
- Tokenization
- Part-of-speech tagging

Our approaches

- Propose a general framework for chunking based on SVMs
- Apply the weighted voting from 8 SVMs-based systems trained with distinct chunk representations

Outline

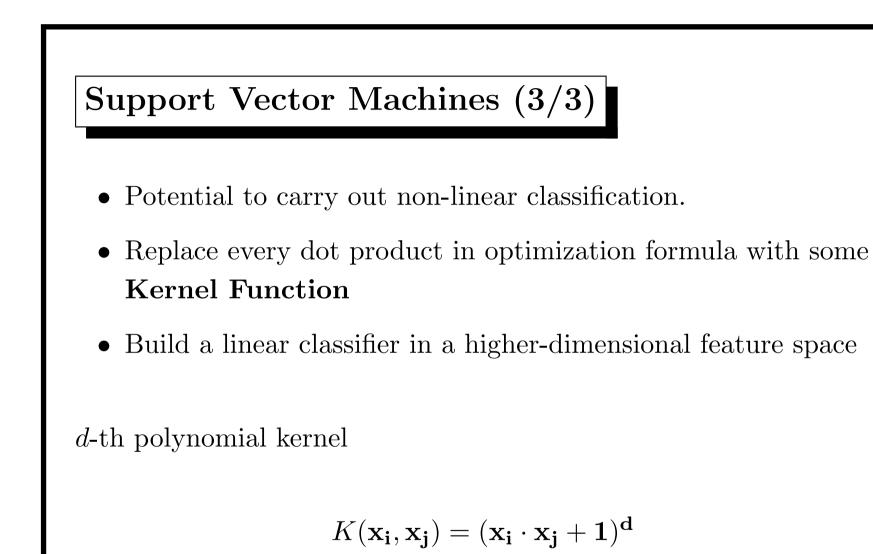
- Brief introduction to Support Vector Machines
- How do we apply SVMs to Chunking?
- Weighted Voting from 8 SVM-based systems
- Experiments and Evaluation
- Summary and future work

Support Vector Machines (1/3)

- V.Vapnik 1995
- Two strong properties
 - High generalization performance independent of feature dimension
 - Training with combinations of multiple features by using a Kernel Function.

Support Vector Machines (2/3)

- Separate positive and negative (binary) examples with a Linear Hyperplane: (w · x + b, w, x ∈ Rⁿ, b ∈ R)
- Find an optimal hyperplane (parameter w, b) with the Maximal Margin Strategy



considering combinations of up to d features

Chunk representation (1/2)

- Regard Chunking as a Tagging task
- Inside/Outside (IOB1) representation
 - I Current token is inside a chunk.
 - O Current token is outside any given chunk.
 - B Current token is the beginning of a chunk which immediately follows another chunk.

Tjong Kim Sang (1997) introduces three alternative versions — IOB2, IOE1 and IOE2

Chunk representation (2/2)

	I	Base NP Chunking		ng	Base Phrase Chunking
	IOB1	IOB2	IOE1	IOE2	IOB2
In	Ο	0	0	Ο	B-PP
early	I	В	Ι	Ι	B-NP
trading	Ι	Ι	Ι	E	I-NP
in	Ο	Ο	Ο	Ο	B-PP
Hong	I	Ι	Ι	Ι	B-NP
Kong	I	Ι	Ε	E	I-NP
Monday	В	В	Ι	E	B-NP

Applying SVMs to Chunking

- Chunking as a classification task of the IOB tags
- We use the pair-wise method to extend a binary classifier (SVMs) to a multi-class classifier

Feature Sets for Learning

• Parsing from left to right,

i - 1, i - 2 IOB tags are added dynamically(Forward Parsing)

• Parsing from right to left,

i + 1, i + 2 IOB tags are added dynamically (**Backward Parsing**)

Chunking with Weighted Voting (1/3)

- 8 SVM-based classifiers can be built: $\{IOB1/IOB2/IOE1/IOE2\} \times \{Forward, Backward\}$
- Final IOB tag is obtained from the weighted voting
- How can we assign voting weights to individual classifiers?
 - Uniform weights (baseline)
 - 5-fold Cross Validation
 - VC bound
 - Leave-One-Out bound

Chunking with Weighted Voting (2/3)

Estimate the accuracy of test data (not training data)

- From the theoretical background of SVMs.
- Only using the training data
- Without re-sampling: training and estimation simultaneously

• VC bound

Estimate the accuracy from the size of the margin

• Leave-One-Out bound

Estimate the accuracy from the number of **support vectors**

Experiments

- **baseNP-S**: Penn Tree Bank/WSJ A standard data set for baseNP chunking
- **baseNP-L**: Penn Tree Bank/WSJ
- base Phrase chunking: Penn Tree Bank/WSJ Total 10 types of base phrase classes VP, PP, ADJP.. Data set for CoNLL-2000 Shared Task

- Evaluation measure: *F*-measure
- Kernel Function: 2nd-polynomial kernel

Results of Weighted Voting

	A	В	С	D
baseNP-S	94.16	94.22	94.22	94.18
baseNP-L	95.77	-	95.66	95.66
base Phrase chunking	93.77	93.89	93.91	93.85

A:Uniform B:Cross Validation C:VC bound D:L-O-O bound

Results of individual representations

baseNP-S:

	•			
	$F_{\beta=1}$	Cross Validation	VC bound	L-O-O bound
IOB1-F	93.76	.9394	.4310	.9193
IOB1-B	93.93	.9422	.4351	.9184
IOB2-F	93.84	.9410	.4415	.9172
IOB2-B	93.70	.9407	.4300	.9166
IOE1-F	93.73	.9386	.4274	.9183
IOE1-B	93.98	.9425	.4400	.9217
IOE2-F	93.98	.9409	.4350	.9180
IOE2-B	94.11	.9426	.4510	.9193

Results of individual representations

baseNP-L:

	$F_{\beta=1}$	VC bound	L-O-O bound
IOB2-F	95.34	.4500	.9497
IOB2-B	95.28	.4362	.9487
IOE2-F	95.32	.4467	.9496
IOE2-B	95.29	.4556	.9503

Results of individual representations

base Phrase Chunking:

	$F_{\beta=1}$	Cross Validation	VC bound	L-O-O bound
IOB1-F	93.48	.9342	.6585	.9605
IOB1-B	93.74	.9346	.6614	.9596
IOB2-F	93.46	.9341	.6809	.9586
IOB2-B	93.47	.9355	.6722	.9594
IOE1-F	93.45	.9335	.6533	.9589
IOE1-B	93.72	.9358	.6669	.9611
IOE2-F	93.45	.9341	.6740	.9606
IOE2-B	93.85	.9361	.6913	.9597

Discussion

- Accuracy improved regardless of the voting scheme used
- Cross-Validation and VC bound outperform Leave-One-Out bound and Uniform in almost all cases
- Comparing VC bound to Cross Validation
 - comparable accuracy
 - both provide good criteria for classifier selection
 - but, Cross Validation requires a larger amount of computational resources

Comparison with related work

	Outline of System	F-measure	
Tjong Kim	Weighted voting of different	baseNP-S 93.86	
Sang 2000	Machine Learning algorithms	baseNP-L 94.22	
	(MBL, ME, IGTree) and	base Phrase 92.50	
	distinct chunk representations		
	(IOB1/IOB2/IOE1/IOE2)		
Proposed	Weighted voting of 8-SVMs	baseNP-S 94.22	
method	based systems trained with	baseNP-L 95.77	
	distinct chunk representations	base Phrase 93.91	
	(IOB1/IOB2/IOE1/IOE2)		

Summary

- We proposed a general framework for chunking based on SVMs.
- We can achieve higher accuracy compared to previous methods
- We can also improve the accuracy by applying weighted voting from 8 SVMs-based classifiers trained with distinct chunk representations
- For the weights assigned to the individual classifiers, we applied methods stemming from the theoretical background of SVMs (VC bound and Leave-One-Out bound)

Future Work

- Application to other chunking tasks (NE, POS tagging, *bunsetsu* identification)
- Consider more predictable bounds such as Span SVM [Chapelle,Vapnik 2000]
- Incorporate variable length models
 The context length features were selected ad-hoc
 But, the optimal context length depends on the task