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Abstract

This paper presents Japanese morphological analy-
sis based on conditional random fields (CRFs). Pre-
vious work in CRFs assumed that observation se-
quence (word) boundaries were fixed. However,
word boundaries are not clear in Japanese, and
hence a straightforward application of CRFs is not
possible. We show how CRFs can be applied to
situations where word boundary ambiguity exists.
CRFs offer a solution to the long-standing prob-
lems in corpus-based or statistical Japanese mor-
phological analysis. First, flexible feature designs
for hierarchical tagsets become possible. Second,
influences of label and length bias are minimized.
We experiment CRFs on the standard testbed corpus
used for Japanese morphological analysis, and eval-
uate our results using the same experimental dataset
as the HMMs and MEMMs previously reported in
this task. Our results confirm that CRFs not only
solve the long-standing problems but also improve
the performance over HMMs and MEMMs.

1 Introduction

Conditional random fields (CRFs) (Lafferty et al.,
2001) applied to sequential labeling problems are
conditional models, trained to discriminate the cor-
rect sequence from all other candidate sequences
without making independence assumption for fea-
tures. They are considered to be the state-of-the-art
framework to date. Empirical successes with CRFs
have been reported recently in part-of-speech tag-
ging (Lafferty et al., 2001), shallow parsing (Sha
and Pereira, 2003), named entity recognition (Mc-
Callum and Li, 2003), Chinese word segmenta-
tion (Peng et al., 2004), and Information Extraction
(Pinto et al., 2003; Peng and McCallum, 2004).

Previous applications with CRFs assumed that
observation sequence (e.g. word) boundaries are
fixed, and the main focus was to predict label
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sequence (e.g. part-of-speech). However, word
boundaries are not clear in non-segmented lan-
guages. One has to identify word segmentation as
well as to predict part-of-speech in morphological
analysis of non-segmented languages. In this pa-
per, we show how CRFs can be applied to situations
where word boundary ambiguity exists.

CRFs offer a solution to the problems in Japanese
morphological analysis with hidden Markov models
(HMMs) (e.g., (Asahara and Matsumoto, 2000)) or
with maximum entropy Markov models (MEMMs)
(e.g., (Uchimoto et al., 2001)). First, as HMMs are
generative, it is hard to employ overlapping fea-
tures stemmed from hierarchical tagsets and non-
independent features of the inputs such as surround-
ing words, word suffixes and character types. These
features have usually been ignored in HMMs, de-
spite their effectiveness in unknown word guessing.
Second, as mentioned in the literature, MEMMs
could evade neither fromlabel bias (Lafferty et
al., 2001) nor fromlength bias(a bias occurring
because of word boundary ambiguity). Easy se-
quences with low entropy are likely to be selected
during decoding in MEMMs. The consequence is
serious especially in Japanese morphological anal-
ysis due to hierarchical tagsets as well as word
boundary ambiguity. The key advantage of CRFs is
their flexibility to include a variety of features while
avoiding these bias.

In what follows, we describe our motivations of
applying CRFs to Japanese morphological analysis
(Section 2). Then, CRFs and their parameter esti-
mation are provided (Section 3). Finally, we dis-
cuss experimental results (Section 4) and give con-
clusions with possible future directions (Section 5).

2 Japanese Morphological Analysis
2.1 Word Boundary Ambiguity
Word boundary ambiguity cannot be ignored when
dealing with non-segmented languages. A simple
approach would be to let a character be a token
(i.e., character-based Begin/Inside tagging) so that
boundary ambiguity never occur (Peng et al., 2004).
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Figure 1: Example of lattice for Japanese morphological analysis

However, B/I tagging is not a standard method in
20-year history of corpus-based Japanese morpho-
logical analysis. This is because B/I tagging cannot
directly reflect lexicons which contain prior knowl-
edge about word segmentation. We cannot ignore
a lexicon since over 90% accuracy can be achieved
even using the longest prefix matching with the lex-
icon. Moreover, B/I tagging produces a number
of redundant candidates which makes the decoding
speed slower.

Traditionally in Japanese morphological analysis,
we assume that a lexicon, which lists a pair of a
word and its corresponding part-of-speech, is avail-
able. The lexicon gives a tractable way to build a
lattice from an input sentence. A lattice represents
all candidate paths or all candidate sequences of to-
kens, where each token denotes a word with its part-
of-speech1.

Figure 1 shows an example where a total of 6
candidate paths are encoded and the optimal path
is marked with bold type. As we see, the set of la-
bels to predict and the set of states in the lattice are
different, unlike English part-of-speech tagging that
word boundary ambiguity does not exist.

Formally, the task of Japanese morphological
analysis can be defined as follows. Letx be an
input, unsegmented sentence. Lety be a path, a
sequence of tokens where each token is a pair of
word wi and its part-of-speechti. In other words,
y = (〈w1, t1〉, . . . , 〈w#y, t#y〉) where#y is the
number of tokens in the pathy. LetY(x) be a set of
candidate paths in a lattice built from the input sen-
tencex and a lexicon. The goal is to select a correct
path ŷ from all candidate paths in theY(x). The
distinct property of Japanese morphological analy-
sis is that the number of tokensy varies, since the
set of labels and the set of states are not the same.

1If one cannot build a lattice because no matching word can
be found in the lexicon, unknown word processing is invoked.
Here, candidate tokens are built using character types, such as
hiragana, katakana, Chinese characters, alphabets, and num-
bers.

2.2 Long-Standing Problems

2.2.1 Hierarchical Tagset
Japanese part-of-speech (POS) tagsets used in
the two major Japanese morphological analyzers
ChaSen2 and JUMAN3 take the form of a hierar-
chical structure. For example, IPA tagset4 used
in ChaSen consists of three categories: part-of-
speech, conjugation form (cform), and conjugate
type (ctype). The cform and ctype are assigned only
to words that conjugate, such as verbs and adjec-
tives. The part-of-speech has at most four levels of
subcategories. The top level has 15 different cate-
gories, such asNoun, Verb, etc.Nounis subdivided
into Common Noun, Proper Nounand so on.Proper
Nounis again subdivided intoPerson, Organization
or Place, etc. The bottom level can be thought as
theword level(base form) with which we can com-
pletely discriminate all words as different POS. If
we distinguish each branch of the hierarchical tree
as a different label (ignoring the word level), the to-
tal number amounts to about 500, which is much
larger than the typical English POS tagset such as
Penn Treebank.

The major effort has been devoted how to in-
terpolate each level of the hierarchical structure as
well as to exploit atomic features such as word suf-
fixes and character types. If we only use the bot-
tom level, we suffer from the data sparseness prob-
lem. On the other hand, if we use the top level,
we lack in granularity of POS to capture fine dif-
ferences. For instance, some suffixes (e.g.,sanor
kun) appear after names, and are helpful to detect
words withNamePOS. In addition, the conjugation
form (cfrom) must be distinguished appearing only
in the succeeding position in a bi-gram, since it is
dominated by the word appearing in the next.

Asahara et al. extended HMMs so as to incorpo-
rate 1) position-wise grouping, 2) word-level statis-

2http://chasen.naist.jp/
3http://www.kc.t.u-tokyo.ac.jp/nl-resource/juman.html
4http://chasen.naist.jp/stable/ipadic/



tics, and 3) smoothing of word and POS level statis-
tics (Asahara and Matsumoto, 2000). However, the
proposed method failed to capture non-independent
features such as suffixes and character types and se-
lected smoothing parameters in an ad-hoc way.

2.2.2 Label Bias and Length Bias

It is known that maximum entropy Markov mod-
els (MEMMs) (McCallum et al., 2000) or other dis-
criminative models with independently trained next-
state classifiers potentially suffer from thelabel bias
(Lafferty et al., 2001) andlength bias. In Japanese
morphological analysis, they are extremely serious
problems. This is because, as shown in Figure 1,
the branching varianceis considerably high, and
the number of tokens varies according to the output
path.

P(A, D | x) = 0.6 * 0.6 * 1.0 = 0.36
P(B | x) = 0.4 * 1.0          = 0.4
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Figure 2: Label and length bias in a lattice

An example of the label bias is illus-
trated in Figure 2:(a) where the path is
searched by sequential combinations of
maximum entropy models (MEMMs), i.e.,
P (y|x) =

∏#y
i=1 p(〈wi, ti〉|〈wi−1, ti−1〉). Even

if MEMMs learn the correct path A-D with in-
dependently trained maximum entropy models,
the path B-E will have a higher probability and
then be selected in decoding. This is because the
token B has only the single outgoing token E, and
the transition probability for B-E is always 1.0.
Generally speaking, the complexities of transitions
vary according to the tokens, and the transition
probabilities with low-entropy will be estimated
high in decoding. This problem occurs because the
training is performed only using the correct path,

ignoring all other transitions.
Moreover, we cannot ignore the influence of the

length biaseither. By the length bias, we mean that
short paths, consisting of a small number of tokens,
are preferred to long path. Even if the transition
probability of each token is small, the total proba-
bility of the path will be amplified when the path is
short 2:(b)). Length bias occurs in Japanese mor-
phological analysis because the number of output
tokensy varies by use of prior lexicons.

Uchimoto et al. attempted a variant of MEMMs
for Japanese morphological analysis with a number
of features including suffixes and character types
(Uchimoto et al., 2001; Uchimoto et al., 2002;
Uchimoto et al., 2003). Although the performance
of unknown words were improved, that of known
words degraded due to the label and length bias.
Wrong segmentation had been reported in sentences
which are analyzed correctly by naive rule-based or
HMMs-based analyzers.

3 Conditional Random Fields

Conditional random fields (CRFs) (Lafferty et al.,
2001) overcome the problems described in Sec-
tion 2.2. CRFs are discriminative models and can
thus capture many correlated features of the inputs.
This allows flexible feature designs for hierarchical
tagsets. CRFs have a single exponential model for
the joint probability of the entire paths given the in-
put sentence, while MEMMs consist of a sequential
combination of exponential models, each of which
estimates a conditional probability of next tokens
given the current state. This minimizes the influ-
ences of the label and length bias.

As explained in Section 2.1, there is word bound-
ary ambiguity in Japanese, and we choose to use
a lattice instead of B/I tagging. This implies that
the set of labels and the set of states are differ-
ent, and the number of tokens#y varies accord-
ing to a path. In order to accomodate this, we de-
fine CRFs for Japanese morphological analysis as
the conditional probability of an output pathy =
(〈w1, t1〉, . . . , 〈w#y, t#y〉) given an input sequence
x:

P (y|x) =
1
Zx

exp
(#y∑

i=1

∑

k

λkfk(〈wi−1, ti−1〉, 〈wi, ti〉)
)
,

whereZx is a normalization factor over all candi-
date paths, i.e.,

Zx =
∑

y′∈Y(x)

exp
(#y′∑

i=1

∑

k

λkfk(〈w′i−1, t
′
i−1〉, 〈w′i, t′i〉)

)
,



fk(〈wi−1, ti−1〉, 〈wi, ti〉) is an arbitrary feature func-
tion overi-th token〈wi, ti〉, and its previous token
〈wi−1, ti−1〉 5. λk(∈ Λ = {λ1, . . . , λK} ∈ RK) is a
learned weight or parameter associated with feature
functionfk.

Note that our formulation of CRFs is different
from the widely-used formulations (e.g., (Sha and
Pereira, 2003; McCallum and Li, 2003; Peng et
al., 2004; Pinto et al., 2003; Peng and McCallum,
2004)). The previous applications of CRFs assign
a conditional probability for a label sequencey =
y1, . . . , yT given an input sequencex = x1, . . . , xT
as:

P (y|x) =
1
Zx

exp
( T∑

i=1

∑

k

λkfk(yi−1, yi,x)
)

In our formulation, CRFs deal with word boundary
ambiguity. Thus, the the size of output sequenceT
is not fixed through all candidatesy ∈ Y(x). The
indexi is not tied with the inputx as in the original
CRFs, but unique to the outputy ∈ Y(x).

Here, we introduce theglobal feature vec-
tor F(y,x) = {F1(y,x), . . . , FK(y,x)}, where
Fk(y,x) =

∑#y
i=1 fk(〈wi−1, ti−1〉, 〈wi, ti〉). Using

the global feature vector,P (y|x) can also be rep-
resented asP (y|x) = 1

Zx
exp(Λ · F(y,x)). The

most probable patĥy for the input sentencex is then
given by

ŷ = argmax
y∈Y(x)

P (y|x) = argmax
y∈Y(x)

Λ · F(y,x),

which can be found with the Viterbi algorithm.
An interesting note is that the decoding process of
CRFs can be reduced into a simple linear combina-
tions over all global features.

3.1 Parameter Estimation

CRFs are trained using the standard maximum
likelihood estimation, i.e., maximizing the log-
likelihood LΛ of a given training setT =
{〈xj ,yj〉}Nj=1,

Λ̂ = argmax
Λ∈RK

LΛ, where

LΛ =
∑

j

log(P (yj |xj))

=
∑

j

[
log
( ∑

y∈Y(xj)

exp
(
Λ · [F(yj ,xj)− F(y,xj)]

))]

=
∑

j

[
Λ · F(yj ,xj)− log(Zxj )

]
.

5We could use trigram or more generaln-gram feature func-
tions (e.g.,fk(〈wi−n, ti−n〉, . . . , 〈wi, ti〉)), however we restrict
ourselves to bi-gram features for clarity.

To maximizeLΛ, we have to maximize the dif-
ference between the inner product (orscore) of the
correct pathΛ · F(yj ,xj) and those of all other
candidatesΛ · F(y,xj), y ∈ Y(xj). CRFs is
thus trained to discriminate the correct path from
all other candidates, which reduces the influences
of the label and length bias in encoding.

At the optimal point, the first-derivative of the
log-likelihood becomes 0, thus,

δLΛ

δλk
=

∑

j

(
Fk(yj ,xj)− EP (y|xj)

[
Fk(y,xj)

])

= Ok − Ek = 0,

whereOk =
∑

j Fk(yj ,xj) is the count of fea-
ture k observed in the training dataT , andEk =∑

j EP (y|xj)[Fk(y,xj)] is the expectation of fea-
ture k over the model distributionP (y|x) andT .
The expectation can efficiently be calculated using
a variant of the forward-backward algorithm.

EP (y|x)[Fk(y,x)] =
∑

{〈w′,t′〉,〈w,t〉}∈B(x)

α〈w′,t′〉 · f∗k · exp(
∑

k′ λk′f
∗
k′) · β〈w,t〉

Zx
,

wheref∗k is an abbreviation forfk(〈w′, t′〉, 〈w, t〉),
B(x) is a set of all bi-gram sequences observed
in the lattice forx, andα〈w,t〉 and β〈w,t〉 are the
forward-backward costs given by the following re-
cursive definitions:

α〈w,t〉 =
∑

〈w′,t′〉∈LT (〈w,t〉)
α〈w′,t′〉 · exp

(∑

k

λkfk(〈w′, t′〉, 〈w, t〉))

β〈w,t〉 =
∑

〈w′,t′〉∈RT (〈w,t〉)
β〈w′,t′〉 · exp

(∑

k

λkfk(〈w, t〉, 〈w′, t′〉)),

whereLT (〈w, t〉) andRT (〈w, t〉) denote a set of
tokens each of which connects to the token〈w, t〉
from the left and the right respectively. Note that
initial costs of two virtual tokens,α〈wbos,tbos〉 and
β〈weos,teos〉, are set to be 1. A normalization constant
is then given byZx = α〈weos,teos〉(= β〈wbos,tbos〉).

We attempt two types of regularizations in order
to avoid overfitting. They are a Gaussian prior (L2-
norm) (Chen and Rosenfeld, 1999) and a Laplacian
prior (L1-norm) (Goodman, 2004; Peng and Mc-
Callum, 2004)

LΛ = C
∑

j

log(P (yj |xj))− 1
2

{∑
k |λk| (L1-norm)∑
k |λk|2 (L2-norm)



Below, we refer to CRFs with L1-norm and L2-
norm regularization as L1-CRFs and L2-CRFs re-
spectively. The parameterC ∈ R+ is a hyperpa-
rameter of CRFs determined by a cross validation.

L1-CRFs can be reformulated into the con-
strained optimization problem below by letting
λk = λ+

k − λ−k :

max : C
∑

j

log(P (yj |xj))−
∑

k

(λ+
k + λ−k )/2

s.t., λ+
k ≥ 0, λ−k ≥ 0.

At the optimal point, the following Karush-Kuhun-
Tucker conditions satisfy:λ+

k · [C · (Ok − Ek) −
1/2] = 0, λ−k · [C · (Ek − Ok) − 1/2] = 0, and
|C · (Ok − Ek)| ≤ 1/2. These conditions mean
that bothλ+

k andλ−k are set to be 0 (i.e.,λk = 0),
when |C · (Ok − Ek)| < 1/2. A non-zero weight
is assigned toλk, only when|C · (Ok − Ek)| =
1/2. L2-CRFs, in contrast, give the optimal solution
when δLΛ

δλk
= C · (Ok−Ek)−λk = 0. Omitting the

proof, (Ok − Ek) 6= 0 can be shown and L2-CRFs
thus give a non-sparse solution where allλk have
non-zero weights.

The relationship between two reguralizations
have been studied in Machine Learning community.
(Perkins et al., 2003) reported that L1-regularizer
should be chosen for a problem where most of given
features areirrelevant. On the other hand, L2-
regularizer should be chosen when most of given
features arerelevant. An advantage of L1-based
regularizer is that it often leads to sparse solutions
where most ofλk are exactly 0. The features as-
signed zero weight are thought asirrelevant fea-
tures to classifications. The L2-based regularizer,
also seen in SVMs, produces a non-sparse solution
where all ofλk have non-zero weights. All features
are used with L2-CRFs.

The optimal solutions of L2-CRFs can be ob-
tained by using traditional iterative scaling algo-
rithms (e.g., IIS or GIS (Pietra et al., 1997)) or more
efficient quasi-Newton methods (e.g., L-BFGS (Liu
and Nocedal, 1989)). For L1-CRFs, constrained op-
timizers (e.g., L-BFGS-B (Byrd et al., 1995)) can be
used.

4 Experiments and Discussion
4.1 Experimental Settings
We use two widely-used Japanese annotated cor-
pora in the research community, Kyoto Univer-
sity Corpus ver 2.0 (KC ) and RWCP Text Corpus
(RWCP), for our experiments on CRFs. Note that
each corpus has a different POS tagset and details
(e.g., size of training and test dataset) are summa-
rized in Table 1.

One of the advantages of CRFs is that they are
flexible enough to capture many correlated fea-
tures, including overlapping and non-independent
features. We thus use as many features as possi-
ble, which could not be used in HMMs. Table 2
summarizes the set of feature templates used in the
KC data. The templates forRWCP are essentially
the same as those ofKC except for the maximum
level of POS subcatgeories. Word-level templates
are employed when the words arelexicalized, i.e.,
those that belong to particle, auxiliary verb, or suf-
fix6. For an unknown word, length of the word, up
to 2 suffixes/prefixes and character types are used
as the features. We use all features observed in the
lattice without any cut-off thresholds. Table 1 also
includes the number of features in both data sets.

We evaluate performance with the standard F-
score (Fβ=1) defined as follows:

Fβ=1 =
2 ·Recall · Precision
Recall + Precision

,

where Recall =
# of correct tokens

# of tokens in test corpus

Precision =
# of correct tokens

# of tokens in system output
.

In the evaluations of F-scores, three criteria of cor-
rectness are used:seg: (only the word segmentation
is evaluated),top: (word segmentation and the top
level of POS are evaluated), andall: (all informa-
tion is used for evaluation).

The hyperparametersC for L1-CRFs and L2-
CRFs are selected by cross-validation. Experiments
are implemented in C++ and executed on Linux
with XEON 2.8 GHz dual processors and 4.0 Gbyte
of main memory.

4.2 Results
Tables 3 and 4 show experimental results using
KC and RWCP respectively. The three F-scores
(seg/top/all) for our CRFs and a baseline bi-gram
HMMs are listed.

In Table 3 (KC data set), the results of a variant
of maximum entropy Markov models (MEMMs)
(Uchimoto et al., 2001) and a rule-based analyzer
(JUMAN7) are also shown. To make a fare compar-
ison, we use exactly the same data as (Uchimoto et
al., 2001).

In Table 4 (RWCP data set), the result of an ex-
tended Hidden Markov Models (E-HMMs) (Asa-

6These lexicalizations are usually employed in Japanese
morphological analysis.

7JUMAN assigns “unknown POS” to the words not seen in
the lexicon. We simply replace the POS of these words with
the default POS,Noun-SAHEN.



Table 1: Details of Data Set
KC RWCP

source Mainich News Article (’95) Mainich News Article (’94)
lexicon (# of words) JUMAN ver. 3.61 (1,983,173) IPADIC ver. 2.7.0 (379,010)
POS structure 2-levels POS, cfrom, ctype, base form 4-levels POS, cfrom, ctype, base form

# of training sentences 7,958 (Articles on Jan. 1st - Jan. 8th)10,000 (first 10,000 sentences)
# of training tokens 198,514 265,631
# of test sentences 1,246 (Articles on Jan. 9th) 25,743 (all remaining sentences)
# of test tokens 31,302 655,710
# of features 791,798 580,032

Table 2: Feature templates:fk(〈w′, t′〉, 〈w, t〉)
t′ = 〈p1′, p2′, cf ′, ct, bw′〉, t = 〈p1, p2, cf, ct, bw〉, wherep1′/p1
andp2′/p2 are the top and sub categories of POS.cf ′/cf andct′/ct
are the cfrom and ctype respectively.bw′/bw are the base form of the

wordsw′/w.

type template
Unigram 〈p1〉
basic features 〈p1, p2〉
w is known 〈bw〉

〈bw, p1〉
〈bw, p1, p2〉

w is unknown length of the wordw
up to 2 suffixes× {φ, 〈p1〉, 〈p1, p2〉}
up to 2 prefixes× {φ, 〈p1〉, 〈p1, p2〉}
character type× {φ, 〈p1〉, 〈p1, p2〉}

Bigram 〈p1′, p1〉
basic features 〈p1′, p1, p2〉

〈p1′, p2′, p1〉
〈p1′, p2′, p1, p2〉
〈p1′, p2′, cf ′, p1, p2〉
〈p1′, p2′, ct′, p1, p2〉
〈p1′, p2′, cf ′, ct′, p1, p2〉
〈p1′, p2′, p1, p2, cf〉
〈p1′, p2′, p1, p2, ct〉
〈p1′, p2′, p1, p2, cf, ct〉
〈p1′, p2′, cf ′, p1, p2, cf〉
〈p1′, p2′, ct, p1, p2, ct〉
〈p1′, p2′, cf ′, p1, p2, ct〉
〈p1′, p2′, ct′, p1, p2, cf〉
〈p1′, p2′, cf ′, ct′, p1, p2, cf, ct〉

w′ is lexicalized 〈p1′, p2′, cf ′, ct′, bw′, p1, p2〉
〈p1′, p2′, cf ′, ct′, bw′, p1, p2, cf〉
〈p1′, p2′, cf ′, ct′, bw′, p1, p2, ct〉
〈p1′, p2′, cf ′, ct′, bw′, p1, p2, cf, ct〉

w is lexicalized 〈p1′, p2′, p1, p2, cf, ct, bw〉
〈p1′, p2′, cf ′, p1, p2, cf, ct, bw〉
〈p1′, p2′, ct′, p1, p2, cf, ct, bw〉
〈p1′, p2′, cf ′, ct′, p1, p2, cf, ct, bw〉

w′/w are lexicalized 〈p1′, p2′, cf ′, ct′, bw′, p1, p2, cf, ct, bw〉

hara and Matsumoto, 2000) trained and tested with
the same corpus is also shown. E-HMMs is applied
to the current implementation of ChaSen. Details of
E-HMMs are described in Section 4.3.2.

We directly evaluated the difference of these sys-
tems using McNemar’s test. Since there are no
standard methods to evaluate the significance of F
scores, we convert the outputs into the character-

based B/I labels and then employ a McNemar’s
paired test on the labeling disagreements. This eval-
uation was also used in (Sha and Pereira, 2003). The
results of McNemar’s test suggest that L2-CRFs is
significantly better than other systems including L1-
CRFs8. The overall results support our empirical
success of morphological analysis based on CRFs.

4.3 Discussion

4.3.1 CRFs and MEMMs
Uchimoto el al. proposed a variant of MEMMs
trained with a number of features (Uchimoto et al.,
2001). Although they improved the accuracy for un-
known words, they fail to segment some sentences
which are correctly segmented with HMMs or rule-
based analyzers.

Figure 3 illustrates the sentences which are incor-
rectly segmented by Uchimoto’s MEMMs. The cor-
rect paths are indicated by bold boxes. Uchimoto et
al. concluded that these errors were caused by non-
standard entries in the lexicon. In Figure 3, “ロマ
ンは” (romanticist)and “ない心” (one’s heart)are
unusual spellings and they are normally written as
“ロマン派” and “内心” respectively. However, we
conjecture that these errors are caused by the influ-
ence of the length bias. To support our claim, these
sentences are correctly segmented by CRFs, HMMs
and rule-based analyzers using the same lexicon as
(Uchimoto et al., 2001). By the length bias, short
paths are preferred to long paths. Thus, single to-
ken “ロマンは” or “ない心” is likely to be selected
compared to multiple tokens “ロマン / は” or “な
い /心”. Moreover, “ロマン” and “ロマンは” have
exactly the same POS (Noun), and transition proba-
bilities of these tokens become almost equal. Con-
sequentially, there is no choice but to select a short
path (single token) in order to maximize the whole
sentence probability.

Table 5 summarizes the number of errors in
HMMs, CRFs and MEMMs, using the KC data set.
Two types of errors,l-error ands-error, are given in

8In all cases, the p-values are less than1.0× 10−4.



Table 3: Results of KC, (Fβ=1 (precision/recall))

system seg top all
L2-CRFs(C=1.2) 98.96 (99.04/98.88) 98.31 (98.39/98.22) 96.75 (96.83/96.67)
L1-CRFs(C=3.0) 98.80 (98.84/98.77) 98.14 (98.18/98.11) 96.55 (96.58/96.51)
MEMMs (Uchimoto 01) 96.44 (95.78/97.10) 95.81 (95.15/96.47) 94.27 (93.62/94.92)
JUMAN (rule-based) 98.70 (98.88/98.51) 98.09 (98.27/97.91) 93.73 (93.91/93.56)
HMMs-bigram(baseline) 96.22 (96.16/96.28) 94.96 (94.90/95.02) 91.85 (91.79/91.90)

Table 4: Results of RWCP, (Fβ=1 (precision/recall))

system seg top all
L2-CRFs(C=2.4) 99.11 (99.03/99.20) 98.73 (98.65/98.81) 97.66 (97.58/97.75)
L1-CRFs(C=3.0) 99.00 (98.86/99.13) 98.58 (98.44/98.72) 97.30 (97.16/97.43)
E-HMMs (Asahara 00) 98.87 (98.77/98.97) 98.33 (98.23/98.43) 96.95 (96.85/97.04)
HMMs-bigram(baseline) 98.82 (98.69/98.94) 98.10 (97.97/98.22) 95.90 (95.78/96.03)
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Figure 3: Errors with MEMMs
(Correct paths are marked with bold boxes.)

Table 5: Number of errors in KC dataset
# of l-errors # of s-errors

CRFs 79 (40%) 120 (60%)
HMMs 306 (44%) 387 (56%)
MEMMs 416 (70%) 183 (30%)

l-error: output longer token than correct one
s-error: output shorter token than correct one

this table. l-error (ors-error) means that a system
incorrectly outputs a longer (or shorter) token than
the correct token respectively. By length bias, long
tokens are preferred to short tokens. Thus, larger
number ofl-errors implies that the result is highly
influenced by the length bias.

While the relative rates ofl-error ands-error are
almost the same in HMMs and CRFs, the number
of l-errors with MEMMs amounts to 416, which
is 70% of total errors, and is even larger than that
of naive HMMs (306). This result supports our
claim that MEMMs is not sufficient to be applied to
Japanese morphological analysis where the length
bias is inevitable.

4.3.2 CRFs and Extended-HMMs

Asahara et al. extended the original HMMs by 1)
position-wise grouping of POS tags, 2) word-level
statistics, and 3) smoothing of word and POS level
statistics (Asahara and Matsumoto, 2000). All of
these techniques are designed to capture hierarchi-
cal structures of POS tagsets. For instance, in the
position-wise grouping, optimal levels of POS hier-
archies are changed according to the contexts. Best
hierarchies for each context are selected by hand-
crafted rules or automatic error-driven procedures.

CRFs can realize such extensions naturally and
straightforwardly. In CRFs, position-wise grouping
and word-POS smoothing are simply integrated into
a design of feature functions. Parametersλk for
each feature are automatically configured by gen-
eral maximum likelihood estimation. As shown in
Table 2, we can employ a number of templates to
capture POS hierarchies. Furthermore, some over-
lapping features (e.g., forms and types of conjuga-
tion) can be used, which was not possible in the ex-
tended HMMs.

4.3.3 L1-CRFs and L2-CRFs

L2-CRFs perform slightly better than L1-CRFs,
which indicates that most of given features
(i.e., overlapping features, POS hierarchies, suf-
fixes/prefixes and character types) are relevant to
both of two datasets. The numbers of active (non-
zero) features used in L1-CRFs are much smaller
(about 1/8 - 1/6) than those in L2-CRFs: (L2-
CRFs: 791,798 (KC) / 580,032 (RWCP) v.s., L1-
CRFs: 90,163 (KC) / 101,757 (RWCP)). L1-CRFs
are worth being examined if there are some practi-
cal constraints (e.g., limits of memory, disk or CPU
resources).



5 Conclusions and Future Work

In this paper, we present how conditional random
fields can be applied to Japanese morphological
analysis in which word boundary ambiguity exists.
By virtue of CRFs, 1) a number of correlated fea-
tures for hierarchical tagsets can be incorporated
which was not possible in HMMs, and 2) influences
of label and length bias are minimized which caused
errors in MEMMs. We compare results between
CRFs, MEMMs and HMMs in two Japanese anno-
tated corpora, and CRFs outperform the other ap-
proaches. Although we discuss Japanese morpho-
logical analysis, the proposed approach can be ap-
plicable to other non-segmented languages such as
Chinese or Thai.

There exist some phenomena which cannot be an-
alyzed only with bi-gram features in Japanese mor-
phological analysis. To improve accuracy, tri-gram
or more generaln-gram features would be useful.
CRFs have capability of handling such features.
However, the numbers of features and nodes in the
lattice increase exponentially as longer contexts are
captured. To deal with longer contexts, we need a
practical feature selection which effectively trades
between accuracy and efficiency. For this challenge,
McCallum proposes an interesting research avenue
to explore (McCallum, 2003).
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