The 61st Annual Meeting of the Association for Computational Linguistics Holographic CCG Parsing

Ryosuke Yamaki¹, Tadahiro Taniguchi¹, Daichi Mochihashi²

¹Ritsumeikan University, ²The Institute of Statistical Mathematics

Motivation

> Explicit modeling of phrase structure

Recent CCG supertagging and parsing models demonstrate high performance yet rely on **non-explicit modeling** of dependencies between words through neural networks.

Explicit modeling of phrase structure with neural networks.

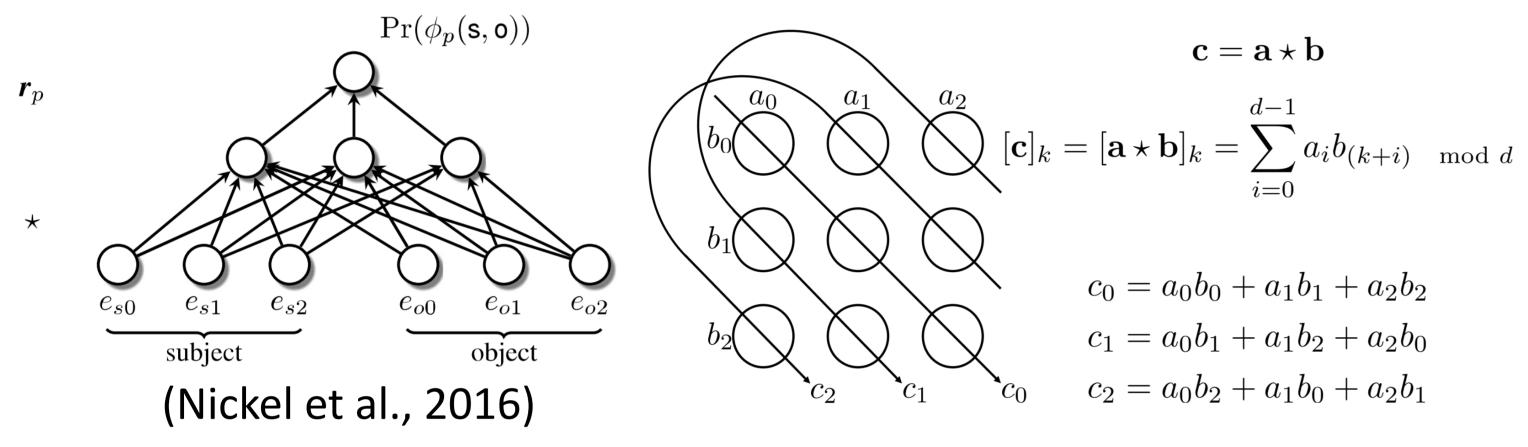
> Syntactic phrase-level representation

Compose syntactically rich phrase-level representations while maintaining training efficiency.

> Span-based Parsing

- Store word-level representations.
- Recursively compose phrase-level representations.
- Directly evaluates category assignment to phrases. 3.

Algorithm 1: Span-based CKY parsing 1 $\mathbf{v}_{0:1}, \mathbf{v}_{1:2}, \cdots, \mathbf{v}_{n-1:n} = Encode(w_1, w_2, \cdots, w_n);$ 2 for $i = 0, \dots, n - 1$ do $P_w(i, i+1) = SM(\mathbf{Q}_w \sigma(LN(\mathbf{U}_w \mathbf{v}_{i:i+1} + \mathbf{b}_w)) + \mathbf{c}_w);$ \triangleright Equation (11) for $C \in \{X | P_w(i, i+1)[X] > t_w = 0.1\}$ do $prob[i, i + 1, C] = \log P_w(i, i + 1)[C];$ $vector[i, i+1, C] = \mathbf{v}_{i:i+1};$ 7 for $\ell = 2, \cdots, n$ do for $i = 0, \cdots, n - \ell$ do $j = i + \ell;$ for $k = i + 1, \dots, j - 1$ do for $C_1 \in \{X | prob[i, k, X] > 0\}$ do $\mathbf{v}_{i:k} = vector[i, k, C_1];$ 12 for $C_2 \in \{X | prob[k, j, X] > 0\}$ do 13 $\mathbf{v}_{k:i} = vector[k, j, C_2];$ 14



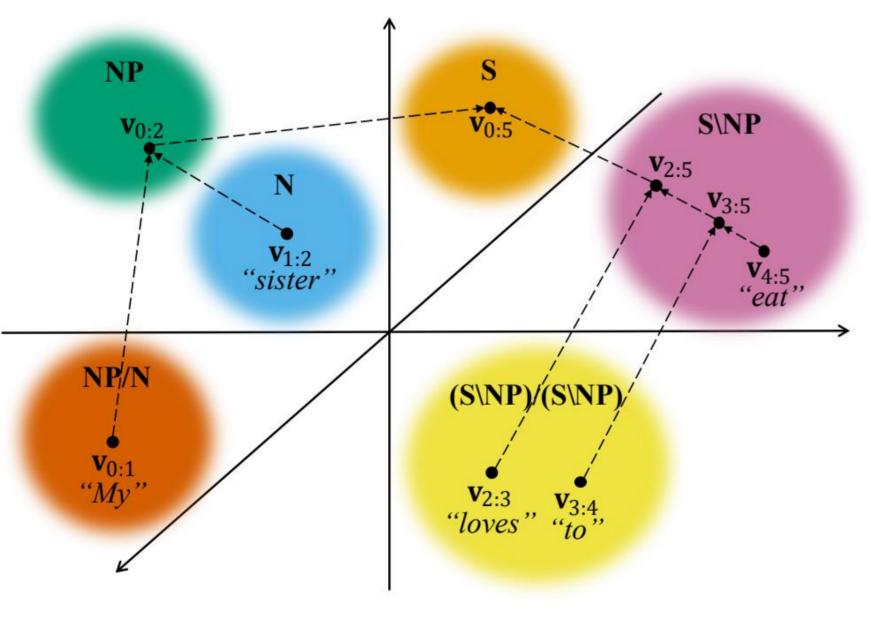
Research Organization of Information and Systems The Institute of Statistical Mathematics

Holographic CCG

> Holographic Embeddings (Nickel et al., 2016)

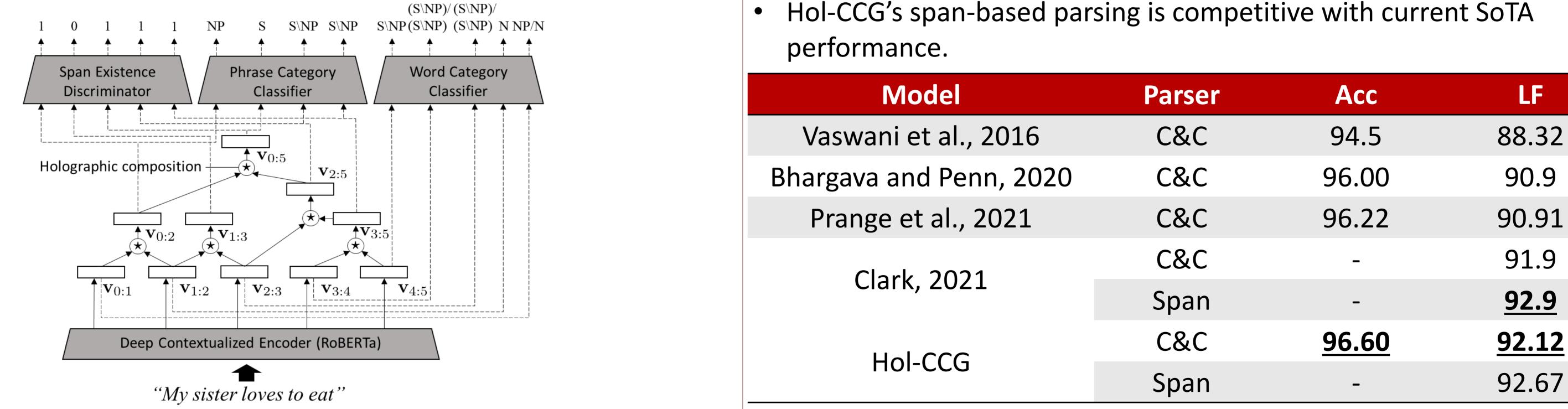
- Embedding knowledge graphs into vector space \bullet for statistical modeling
- Vector composition using **circular correlation** to capture dependencies between entities
- Similarity of knowledge graphs and phrase structures that need to capture dependencies between components

- **Holographic CCG (Hol-CCG)**
- Formulate CCG as a **recursive compositional operation** between


14	$\mathbf{v}_{k:j} = vecior[\kappa, j, \mathbf{C}_2],$	
15	for $C \in \{X C_1 C_2 \rightarrow X \in R\}$ do	
16	$\mathbf{v}_{i:j} = \mathbf{v}_{i:k} \star \mathbf{v}_{k:j} ;$	▷ Equations (4) and (5)
17	$P_s(i,j) = SM(\mathbf{Q}_s\sigma(LN(\mathbf{U}_s\mathbf{v}_{i:j} + \mathbf{b})))$	$(\mathbf{b}_s)) + \mathbf{c}_s); \qquad \triangleright Equation (13)$
18	if $P_s(i, j)[e] > t_s = 0.01$ then	
19	$P_p(i,j) = SM(\mathbf{Q}_p\sigma(LN(\mathbf{U}_p\mathbf{v}_{i:j}$	$(+ \mathbf{b}_p)) + \mathbf{c}_p); \triangleright$ Equation (12)
20	if $P_p(i, j)[C] > t_p = 0.01$ then	
21	$p = \log P_p(i,j)[C] + \log P_s(i,j)[C] + \log P_s(i,$	$j)[e]+prob[i,k,C_1]+prob[k,j,C_2];$
22	if $p > prob[i, j, C]$ then	
23	prob[i, j, C] = p;	
24	backpointer[i, j, C] = (k	$, C_1, C_2);$
25	$vector[i, j, C] = \mathbf{v}_{i:j};$	

Experiment

- Dataset: CCGbank (Hockenmaier et al., 2007)
- Calculate the model's prediction error by cross entropy
 - \succ Category assignment to words and phrases: \mathcal{L}_w , \mathcal{L}_p
 - \succ Existence of span: \mathcal{L}_{s}
- Compare models by changing the combination of back-propagating errors (\mathcal{L})
 - \succ Baseline: $\mathcal{L} = \mathcal{L}_{w}$
 - \succ Hol-CCG: $\mathcal{L}=\mathcal{L}_w + \mathcal{L}_p + \mathcal{L}_s$
- Supertagging by Baseline and Hol-CCG
- Parsing using C&C Parser (Clark and Curran, 2007) and Hol-CCG's


distributed representations in a vector space.

• Applicable to **Supertagging** and **Span-based Parsing**.

> Model Structure

- 1. Encode word sequence into distributed representations.
- 2. Recursively compose phrase-level representations.
- 3. Predict CCG categories and span existence.

span-based parsing

Result & Discussion

- Hol-CCG outperforms baseline.
- Span-based Parsing outperforms C&C Parser.
- Explicit modeling of word/phrase dependencies through composition of phrase representations is effective for both supertagging and parsing.

Training Objectives	Parser	Acc	LF
\mathcal{L}_w (baseline)	C&C	96.41 ± 0.03	91.77 ± 0.03
	C&C	<u>96.59 ± 0.02</u>	<u>92.03 ± 0.04</u>
$\mathcal{L}_w + \mathcal{L}_p + \mathcal{L}_s$ (Hol-CCG)	Span	_	<u>92.61 ± 0.03</u>

- Hol-CCG achieved SoTA in supertagging accuracy and LF with C&C Parser.
- Hol-CCG's span-based parsing is competitive with current SoTA

Nickel, Maximilian, Lorenzo Rosasco, and Tomaso Poggio. "Holographic embeddings of knowledge graphs." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. No. 1. 2016. Julia Hockenmaier, and Mark Steedman. "CCGbank: a corpus of CCG derivations and dependency structures extracted from the Penn Treebank." Computational Linguistics 33.3 (2007): 355-396. Stephen Clark, and James R. Curran. "Wide-coverage efficient statistical parsing with CCG and log-linear models." Computational Linguistics 33.4 (2007): 493-552. Vaswani, Ashish, et al. "Supertagging with Istms." Proceedings of the 2016 Conference of the Association for Computational Linguistics: Human Language Technologies. 2016. Bhargava, Aditya, and Gerald Penn. "Supertagging with CCG primitives." Proceedings of the 5th Workshop on Representation Learning for NLP. 2020. Prange, Jakob, Nathan Schneider, and Vivek Srikumar. "Supertagging the long tail with tree-structured decoding of complex categories." Transactions of the Association for Computational Linguistics 9 (2021): 243-260. Clark, Stephen. "Something old, something new: Grammar-based CCG parsing with transformer models." arXiv preprint arXiv:2109.10044 (2021).