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Abstract

This paper presents a novel hybrid genera-

tive/discriminative model of word segmenta-

tion based on nonparametric Bayesian meth-

ods. Unlike ordinary discriminative word seg-

mentation which relies only on labeled data,

our semi-supervised model also leverages a

huge amounts of unlabeled text to automat-

ically learn new “words”, and further con-

strains them by using a labeled data to seg-

ment non-standard texts such as those found

in social networking services.

Specifically, our hybrid model combines a

discriminative classifier (CRF; Lafferty et al.

(2001) and unsupervised word segmentation

(NPYLM; Mochihashi et al. (2009)), with a

transparent exchange of information between

these two model structures within the semi-

supervised framework (JESS-CM; Suzuki and

Isozaki (2008)). We confirmed that it can

appropriately segment non-standard texts like

those in Twitter and Weibo and has nearly

state-of-the-art accuracy on standard datasets

in Japanese, Chinese, and Thai.

1 Introduction

For any unsegmented language, especially East

Asian languages such as Chinese, Japanese and

Thai, word segmentation is almost an inevitable first

step in natural language processing. In fact, it is be-

coming increasingly important lately because of the

growing interest in processing user-generated me-

dia, such as Twitter and blogs. Texts in such media

are often written in a colloquial style that contains

many new words and expressions that are not present

in any existing dictionaries. Since such words are

theoretically infinite in number, we need to lever-

age unsupervised learning to automatically identify

them in corpora.

For this purpose, ordinary supervised learning is

clearly unsatisfactory; even hand-crafted dictionar-

ies will not suffice because functional expressions

more complex than simple nouns need to be recog-

nized through their relationship with other words in

text, which also might be unknown in advance. Pre-

vious studies of this issue used character and word

information in the framework of supervised learning

(Kruengkrai et al., 2009; Sun et al., 2009; Sun and

Xu, 2011). However, they

(1) did not explicitly model new words, or

(2) did not give a seamless combination with dis-

criminative classifiers (e.g., they just used a

threshold to discriminate between known and

unknown words).

In contrast, unsupervised word segmentation

methods (Goldwater et al., 2006; Mochihashi et

al., 2009) use nonparametric Bayesian generative

models for word generation to infer the “words”

only from observations of raw input strings. These

methods work quite well and have been used not

only for tokenization but also for machine transla-

tion (Nguyen et al., 2010), speech recognition (Lee

and Glass, 2012; Heymann et al., 2014), and even

robotics (Nakamura et al., 2014).

However, from a practical point of view, such

purely unsupervised approaches do not suffice.

Since they only aim to maximize the probability of

the language model on the observed set of strings,

they sometimes yield word segmentations that are
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Figure 1: Excerpt of Weibo tweets. It contains many “un-

known” words such as novel proper nouns, terms from

local dialects, etc., that cannot be covered by ordinary la-

beled data or dictionaries.



different from human standards on low frequency

words.

To solve this problem, this paper describes a novel

combination of a nonparametric Bayesian gener-

ative model (NPYLM; Mochihashi et al. (2009))

and a discriminative classifier (CRF; Lafferty et al.

(2001)). This combination is based on a semi-

supervised framework called JESS-CM (Suzuki and

Isozaki, 2008), and it requires a nontrivial exchange

of information between these two models. In this

approach, the generative and discriminative models

will “teach each other” and yield a novel log-linear

model for word segmentation.

Experiments on standard datasets of Chinese,

Japanese, and Thai indicate that this hybrid model

achieves nearly state-of-the-art accuracy on standard

corpora, and, thanks to our nonparametric Bayesian

model of infinite vocabulary it can accurately seg-

ment non-standard texts like those in Twitter and

Weibo (the Chinese equivalent of Twitter) without

any human intervention.

This paper is organized as follows. Section 2 in-

troduces NPYLM which will be leveraged in the

framework of JESS-CM, described in Section 3.

Section 4 introduces our model, NPYCRF, and

the necessary exchange of information, while Sec-

tion 5 is devoted to experiments on datasets in Chi-

nese, Japanese, and Thai. We analyze the results

and discuss future directions of research on semi-

supervised learning in Section 6 and conclude in

Section 7.

2 Unsupervised Word Segmentation

To acquire new words from an observation consist-

ing of raw strings, a generative model of words

can be extremely useful for word segmentation.

Goldwater et al. (2006) showed that a bigram hi-

erarchical Dirichlet process (HDP) model based

on Gibbs sampling can effectively find “words” in

small corpora. In extending this work, Mochihashi

et al. (2009) proposed a nested Pitman-Yor language

model (NPYLM), a hierarchical Bayesian language

model, where character n-grams (actually, ∞-grams

(Mochihashi and Sumita, 2008)) are embedded in

word n-grams, and an efficient dynamic program-

ming algorithm for inference exists. Conceptually,

NPYLM posits that an infinite number of spellings,

Character HPYLM

Word HPYLM

Figure 2: The structure of NPYLM by a Chinese Restau-

rant Process representation (replicated from Mochihashi

et al. (2009)). The word and character HPYLM are drawn

as suffix trees; the character HPYLM is a base measure

for the word HPYLM, and the two are learned as a single

model. Each black customer is a count in HPYLM, and a

white customer is a latent proxy customer initiated from

each black customer: see Teh (2006) for details.

i.e., “words”, are probabilistically generated from

character n-grams, and a word unigram is drawn us-

ing the character n-grams as the base measure. Then

bigram and trigram distributions are hierarchically

generated and the final string is yielded from the

“word” n-grams, as shown in Figure 2.

Practically, NPYLM can be considered as a hi-

erarchical smoothing of the Bayesian n-gram lan-

guage model, HPYLM (Teh, 2006). In HPYLM, the

predictive distribution of a word w=wt given a his-

tory h=wt−(n−1) · · ·wt−1 is expressed as

p(w|h) =
c(w|h)−d·thw

θ+c(h)
+
θ+d·th ·

θ+c(h)
·p(w|h′) (1)

where c(w|h) denotes the observed counts, θ and d
are model parameters, and thw and th·=

∑

w thw are

latent variables estimated in the model.

The probability of w given h is recur-

sively interpolated using a shorter history

h′ = wt−(n−2) · · ·wt−1. If h is already empty

at the unigram level, NPYLM employs a back-off

distribution using character n-grams for p(w|h′):

p0(w) = p(c1 · · · ck) (2)

=
∏k

i=1 p(ci|c1 · · · ci−1) . (3)

In this way, NPYLM can assign appropriate prob-

abilities to every possible sequence of segmenta-

tion and learn the word and character n-grams at

the same time by using a single generative model

(Mochihashi et al., 2009).

Semi-Markov view of NPYLM NPYLM formu-

lates unsupervised word segmentation as learning

with a semi-Markov model (Figure 3). Here, each



node corresponds to an inside probability α[t][k]1

that equals the probability of a substring ct1 =
c1 · · · ct with the last k characters ctt−k+1 being a

word. This inside probability can be computed re-

cursively as follows:

α[t][k] =

L
∑

j=1

p(ctt−k+1|c
t−k
t−k−j+1) · α[t−k][j] (4)

Here, 1≤L≤ t−k is the maximum allowed length of

a word. With these inside probabilities, we can make

use of Markov Chain Monte Carlo (MCMC) method

with an efficient forward filtering-backward sam-

pling algorithm (Scott, 2002), namely a “stochas-

tic Viterbi” algorithm to iteratively sample “words”

from raw strings in a completely unsupervised fash-

ion, while avoiding local minima.

Problems and Beyond Unsupervised word seg-

mentation with NPYLM works surprisingly well for

many languages (Mochihashi et al., 2009); however,

it has certain issues. First, since it optimizes the

performance of the language model, its segmenta-

tion does not always conform to human standards

and depends on subtle modeling decisions. For ex-

ample, NPYLM often separates inflectional suffixes

in Japanese like “る” in “見–る” from the rest of

the verb, when it is actually a part of the verb it-

self. Second, it can produce deficient segmenta-

tions for low-frequency words and the beginning or

ending of a string where the available information

comes from only one direction. These issues can

be alleviated by using naı̈ve semi-supervised learn-

ing method (Mochihashi et al., 2009) that simply

Figure 3: Semi-Markov model representation of NPYLM

(simplest case of segment length ≤ 3). Each node corre-

sponds to a substring ending at time t, and its length k is

indexed by each row.

1While we consider only bigrams in this paper for simplic-

ity, the theory can be naturally extended to higher-order n-

grams. However, it requires quite a complicated implementa-

tion, and the expected gain in performance will not be large,

even if we use trigrams (Mochihashi et al., 2009).

Figure 4: Semi-supervised learning of the same model

structure (HMM and CRF) with JESS-CM. Discrimina-

tive and generative potentials are given relative weights

1 : λ0, and added together in the log probability domain.

adds n-gram counts from supervised segmentations

in advance. However, this solution is not perfect

because these supervised counts will eventually be

overwhelmed by the unsupervised counts, because

the overall objective function remains unsupervised.

To resolve this issue, we must resort to an explicit

semi-supervised learning framework that combines

both discriminative and generative models. We used

JESS-CM (Suzuki and Isozaki, 2008), currently the

best such framework for this purpose, which we will

briefly introduce below.

3 Integration with a Discriminative Model

JESS-CM (Joint probability model Embedding style

Semi-Supervised Conditional Model) is a semi-

supervised learning framework that outperforms

other generative and log-linear models (Druck and

McCallum, 2010). In JESS-CM, the probability of a

label sequence y given an input sequence x is writ-

ten as follows:

p(y|x) ∝ pDISC(y|x; Λ) pGEN(y,x; Θ)λ0 (5)

where pDISC and pGEN are respectively the discrim-

inative and generative models, and Λ and Θ are their

corresponding parameters. Equation (5) is the prod-

uct of the experts, where each expert works as a

“constraint” to the other with a relative geometrical

interpolation weight 1 :λ0. If we take pDISC to be a

log-linear model like CRF (Lafferty et al., 2001):

pDISC(y|x) ∝ exp
(

∑K
k=1 λkfk(y,x)

)

, (6)

Equation (5) can be also expressed as a log-

linear model with a new “feature function”

log pGEN(y,x):

p(y|x) ∝ exp
(

λ0 log pGEN(y,x) +
∑K

k=1 λkfk(y,x)
)

= exp (Λ · F (y,x)) . (7)



Here, the parameter Λ = (λ0, λ1, · · · , λK) includes

the interpolation weight λ0 and

F (y,x)=(log pGEN(y,x), f1(y,x), · · · , fK(y,x)).

JESS-CM interleaves the optimization of Λ and Θ
to maximize the objective function

p(Yl,Xu|Xl; Λ,Θ) = p(Yl|Xl; Λ) · p(Xu; Θ) (8)

where 〈Xl, Yl〉 is the labeled dataset and Xu is the

unlabeled dataset.

Suzuki and Isozaki (2008) conducted semi-

supervised learning on a combination of a CRF and

an HMM, as shown in Figure 4. Since CRF and

HMM have the same Markov model structure, they

interpolate two weights
∑K

k=1 λkfk(yt, yt−1,x) and (9)

λ0 log pGEN(yt|yt−1,x) (10)

on the corresponding path, altenately

• fixing Θ and optimizing Λ of CRF on 〈Xl, Yl〉,
and

• fixing Λ and optimizing Θ of HMM on Xu

until convergence, and thereby iteratively maximiz-

ing the two terms in (8).

Through this optimization, pDISC and pGEN will

“teach each other” to make the feature log pGEN

more accurate, and further rectified by pDISC with

respect to the labeled data. Note that the interpo-

lation weight λ0 is automatically computed through

this process.

4 Connecting Two Worlds: NPYCRF

We wish to integrate NPYLM and CRF, applying

semi-supervised learning via JESS-CM. Note that

Suzuki and Isozaki (2008) implicitly assumed that

the discriminative and generative models have the

same structure as shown in Figure 4. Since NPYLM

is a semi-Markov model as described in Section 2, a

naı̈ve approach would be to combine it with a semi-

Markov CRF (Sarawagi and Cohen, 2005) as the dis-

criminative model.

However, this strategy does not work well for

two reasons: First, since a semi-Markov CRF is a

model for transitions between segments, it cannot

deal with character-level transitions and thus per-

forms suboptimally on its own. In fact, our pre-

liminary supervised word segmentation experiments

showed a F1 measure of around 95%, whereas a

⇐⇒

東 京 都 の 東 京 都 の“都”

“京都”

“東京都”

1

0

Figure 5: Equivalence of semi-Markov (left) and Markov

(right) potentials. The potential of substring “東京都”

(Tokyo prefecture) being a word on the left is equivalent

to the sum of potentials along the U-shaped path on the

right.

character-wise Markov CRF achieves >99%. Sec-

ond, the semi-Markov CRF was originally designed

to chunk at most a few words (Sarawagi and Cohen,

2005). However, in word segmentation of Japanese,

for example, we often encounter long proper nouns

or Katakana sequences that are more than ten char-

acters, requiring a huge amount of memory even for

a small dataset.

In this paper we instead transparently exchange

information between the Markov model (CRF) on

characters and the semi-Markov model (NPYLM)

on words to perform a semi-supervised learning on

different model structures. Called NPYCRF, this

unified statistical model makes good use of the dis-

criminative model (CRF) from the labeled data and

the generative model (NPYLM) from the unlabeled

data.

4.1 CRF→NPYLM

To convert from a CRF to NPYLM, we can easily

translate Markov potentials into semi-Markov po-

tentials as shown in Andrew (2006) for the super-

vised learning case.

Consider the situation depicted in Figure 5. Here

we can see that the potential of the substring “東京
都” (Tokyo prefecture) in the semi-Markov model

(left) corresponds to the sum of the potentials in

the Markov model (right) along the path shown in

bold. Here, we introduce binary hidden states in the

Markov model for each character, similarly to the BI

tags used in supervised learning, where state 1 repre-

sents the beginning of a word and state 0 represents

a continuation of the word.

Mathematically, we define γ[a, b) as the sum of

the potentials along a U-shaped path over an inter-

val [a, b) (a<b) as shown in Figure 5, which begins

with state 1 and ends with (but does not include) 1.
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Figure 6: Substring transitions for marginalization.

Using this notation, the potential that corresponds to

α[t][k] is γ[t− k+1, t + 1) covering ct−k+1 · · · ct,
and thus the forward recursion of the inside proba-

bility α[t][k] that incorporates the information from

the CRF can be written as follows, instead of (4):

α[t][k] =

L
∑

j=1

exp
[

λ0 log p(c
t
t−k+1|c

t−k
t−k−j+1)

+ γ[t−k+1, t+1)
]

· α[t−k][j]. (11)

Backward sampling can be performed in a similar

fashion. In this way, we can incorporate information

from the character-wise discriminative model (CRF)

into the language model segmentation of NPYLM.

4.2 NPYLM→CRF

On the other hand, translating the information from

the semi-Markov to Markov model, i.e., translat-

ing a potential from the word-based language model

into the character-wise discriminative classifier, is

not trivial. However, as we describe below, it is ac-

tually possible to do so by extending the technique

proposed in Andrew (2006).

Note that for the inference of CRF, from the stan-

dard theory of log-linear models we only have to

compute its gradient with respect to the expectation

of each feature in the current model. This reduces

the problem to a computation of the marginal prob-

ability of each path, which can be derived within the

framework of semi-Markov models as follows:

Semi-Markov feature λ0 . Following the line of

argument presented in the Section 4.1, the po-

tential with respect to the semi-Markov feature

weight λ0 that is associated with the word transi-

tion ct−k
t−k−j+1 → ctt−k+1, shown in Figure 6, can

be expressed as an expectation using the standard

forward-backward formula:

p(ctt−k+1, c
t−k
t−k−j+1|s) = α[t−k][j]β[t][k] ·

exp
[

λ0 log p(c
t
t−k+1|c

t−k
t−k−j+1) + γ[t−k+1, t+1)

]

/Z(s) (12)

Here, Z(s) is a normalizing constant associated with

each input string s, and β[t][k] is a backward proba-

bility similar to (11) computed by

β[t][k] =

L
∑

j=1

exp
[

λ0 log p(c
t+j
t+1|c

t
t−k+1)

γ[t+1, t+j+2)
]

· β[t+j][j] . (13)

Markov features λ1, · · · , λK . Note that the fea-

tures associated with label bigrams in our binary

CRF can be divided into four types: 1-1,1-0,0-1, and

0-0, as shown in Figure 7.

Case 1-1: As shown in Figure 8(a), this case means

that a word of length 1 begins at time t, which is

equivalent to the probability of substring ctt being

a word:

p(zt=1, zt+1=1|s) = p(ctt|s). (14)

Here, p(ckℓ |s) is the marginal probability of a sub-

string cℓ · · · ck being a word, which can be derived

from equation (12):

p(ckℓ |s) =
∑

j

p(ckℓ , c
ℓ−1
ℓ−j |s)

=
∑

j

α[ℓ−1][j] · β[k][k−ℓ+1] ·

exp
[

λ0 log p(c
k
ℓ |c

ℓ−1
ℓ−j ) + γ[ℓ, k+1)

]

/Z(s)

=
β[k][k−ℓ+1]

Z(s)
·
∑

j

exp
[

λ0 log p(c
k
ℓ |c

ℓ−1
ℓ−j )

+ γ[ℓ, k+1)
]

α[ℓ−1][j]

=
α[k][k−ℓ+1] · β[k][k−ℓ+1]

Z(s)
(15)

Case 1-0: As shown in Figure 8(b), this case means

that a word begins at time t and has length at

least 2. Since we do not know the endpoint of

this word, we can obtain the probability p(zt =
1, zt+1=0) by marginalizing over the endpoint j
(· · · means values all 0):

p(zt=1, zt+1=0|s)

=
∑

j=2

p(zt=1, zt+1=0, · · · , zt+j=1|s)

=
∑

j=2

p(ct+j−1
t |s) (16)

Figure 7: Four types of label transitions in Markov CRF.



(a) Case of 1–1

(b) Case of 1–0 (c) Case of 0–1

Figure 8: Label bigram potentials for marginalization.

The probability of each label bigram (bold) of the Markov

model can be obtained by marginalizing the probability

of the U-shaped path including it, which is computed in

the semi-Markov model.

where p(ct+j−1
t |s) is obtained from (15).

Case 0-1: Similarly, as shown in Figure 8(c) this

case means that a word of length at least 2 begins

before time t and ends at time t. Therefore, we

can marginalize over the start point of a possible

word to obtain the marginal probability:

p(zt=0, zt+1=1|s)

=
∑

j=1

p(zt−j=1, · · · , zt=0, zt+1=1|s) (17)

=
∑

j=1

p(ctt−j |s) . (18)

Case 0-0: In principle, this means that a word be-

gins before time t and ends later than (and includ-

ing) time t+1. Therefore, we can marginalize

over both the start and end time of a possible word

spanning [t, t+1] to obtain:

p(zt=0, zt+1=0|s) =
∑

j=1

∑

k=1

p(ct+k
t−j |s) . (19)

However, in fact we can avoid this nested compu-

tation because the probability of p(zt, zt+1) over

the possible values of zt and zt+1 must sum to

1. We can therefore simply calculate it as follows

(Andrew, 2006):

p(zt=0, zt+1=0|s) = 1−p(1, 1)−p(1, 0)−p(0, 1)
(20)

where p(x, y) means p(zt=x, zt+1=y|s).

4.3 Inference

Finally, we obtain the inference algorithm for NPY-

CRF as a variant of the MCMC-EM algorithm (Wei

and Tanner, 1990) shown in Figure 9.2 In learning of

a NPYLM, we add the CRF potentials as described

in Section 4.1, and sample a possible segmenta-

tion from the posterior through Forward filtering-

Backward sampling to update the model parameters.

On the basis of this improved language model, the

CRF weights are then optimized by incorporating

language model features as explained in Section 4.2.

We iterate this process until convergence.

Note that we first have to learn an unsupervised

segmentation in Step 2 before training the CRF.

Since our inference algorithm includes an optimiza-

tion of CRF and thus is not a true MCMC, the learn-

ing of word segmentation after the supervised infor-

mation will be severely constrained and likely to get

stuck in local minima.

In practice, we found that the EM-style batch

learning of CRF described above often fails because

our objective function is non-convex. Therefore, we

switched to ADF below (Sun et al., 2014), an adap-

tive stochastic gradient descent that yields state-of-

the-art accuracies for natural language processing

problems including word segmentation. In this case,

Λ in Figure 9 was optimized with each minibatch

through the labeled data 〈Xl, Yl〉, while incorporat-

ing information from the unlabeled data Xu by the

language model.

Because of its heavy computational demands,

1: Add 〈Yl, Xl〉 to NPYLM.

2: Optimize Λ on 〈Yl, Xl〉. (pure CRF)

3: for j = 1 · · ·M do

4: for i = randperm(1 · · ·N) do

5: if j > 1 then

6: Remove customers of X
(i)
u from NPYLM Θ

7: end if

8: Draw segmentations of X
(i)
u from NPYCRF

9: Add customers of X
(i)
u to NPYLM Θ

10: end for

11: Optimize Λ of NPYCRF on 〈Yl, Xl〉.
12: end for

Figure 9: Basic learning algorithm for NPYCRF. X
(i)
u

denotes the i-th sentence in the unlabeled data Xu. We

can also iterate steps 4 to 10 several times until Θ approx-

imately converges, before updating Λ.

2It is possible to fix NPYLM and just use this as a feature

to CRF: this amounts to running only the first iteration (j =1)

of the EM algorithm. However, it still requires NPYLM→CRF

conversion in Section 4.2, and we found that the performance is

not optimal while slightly better than plain CRF.



Language Dataset Labeled Unlabeled Test

Chinese
MSR 86,924 865,679 3,985

Weibo 10K-40K 880,9203 30,000

Japanese Twitter 59,931 600,000 444

Thai InterBEST 10,000 30,133 10,000

Table 1: Statistics of the datasets for the experiments.

we parallelized the NPYLM sampling over sev-

eral processors and because of the possible corre-

lation of segmentations within the samples, used the

Metropolis-Hastings algorithm to correct them. The

acceptance rate in our experiments was over 99%.

For decoding, we can simply find a Viterbi path in

the integrated semi-Markov model while fixing all

the sampled segmentations on the unlabeled data.

5 Experiments

We conducted experiments on several corpora of un-

segmented languages: Japanese, Chinese, and Thai.

The corpora included standard corpora as well as

text from Twitter and its equivalent, Weibo, in Chi-

nese.

5.1 Data

Chinese For Chinese, we first used a standard

dataset from the SIGHAN Bakeoff 2005 (Emerson,

2005) for the labeled and test data, and Chinese gi-

gaword version 2 (LDC2009T14) for the unlabeled

data. We chose the MSR subset of SIGHAN Bakeoff

written in simplified Chinese together with the pro-

vided training and test splits, which contain about

87K/40K sentences, respectively. For the unlabeled

data, i.e., a collection of raw strings, we used a ran-

dom subset of 880K sentences from Chinese giga-

word with all spaces removed. We chose this size to

be about 10 times larger than the labeled data, con-

sidering current computational requirements. We

used the part from the Xinhua news agency 2004 and

split the data into sentences at the end-of-sentence

character “。”.

Because the MSR and Xinhua datasets were com-

piled from newspapers, to meet our objective on in-

formal text we conducted further experiments using

3This is the total number of sentences in the experiment: the

actual number of unsupervised sentences is this set minus the

different number of supervised sentences.

Name Labels F Filtered

Sun+ (2009) 2 N/A 0.973

Sun+ (2014) 3 N/A 0.975

Chen+ (2015) 4 (Neural) 0.976 –

Zhang+ (2016) 2 (Neural) 0.977 –

NPYCRF 2 0.970 0.973

NPYCRF 3 0.973 0.976

Table 2: Accuracies of Bakeoff MSR dataset in Chinese.

“Filtered” are the results with a simple post-hoc filter de-

scribed in Sun et al. (2009).

Data Label Unlabel IV OOV F

Topline 880K – 0.981 0.699 0.977

Sup 10K 10K – 0.949 0.690 0.928

Sup 20K 20K – 0.957 0.683 0.941

Sup 40K 40K – 0.963 0.682 0.951

Semi 10K 10K 870K 0.954 0.698 0.933

Semi 20K 20K 860K 0.961 0.690 0.945

Semi 40K 40K 840K 0.970 0.648 0.955

Table 3: Accuracies on Leiden Weibo corpus in Chinese.

‘Label’ and ‘Unlabel’ are the amounts of labeled and un-

labeled data, respectively. “Topline” is an ideal situation

of complete supervision, and K=103 sentences.

the Leiden Weibo corpus4 from Weibo, a Twitter

equivalent in China. From this dataset, we used the

sentences that have exact correspondence between

the provided segmented-unsegmented pair, yielding

about 880K sentences. Since we did not know how

much supervision would be necessary for a decent

performance, we conducted experiments with dif-

ferent amounts of labeled data: 10K, 20K, 40K and

880K(all). Note that the final case amounts to com-

plete supervision, an ideal situation that is not likely

in practice.

Japanese Word segmentation accuracies around

99% have already been reported for newspaper do-

mains in Japanese (Kudo et al., 2004). Therefore, we

only conducted experiments on segmenting Twitter

text. In addition to our random Twitter crawl in April

2014, we used a corpus of Japanese Twitter text

compiled by the Tokyo Metropolitan University5.

This corpus is actually very small, 944 sentences. It

mainly targets transfer learning and is segmented ac-

cording to BCCWJ (Basic Corpus of Contemporary

4
http://www.leidenweibocorpus.nl/openaccess.php

5
https://github.com/tmu-nlp/TwitterCorpus



Written Japanese) standards from the National Insti-

tute of Japanese Language (Maekawa, 2007). There-

fore, for the labeled data we used the “core” subset

of BCCWJ consisting of about 59K sentences plus

500 random sentences from the Twitter dataset. We

used the remaining 444 sentences for testing. For

the unlabeled data, we used a random crawl of 600K

Japanese sentences collected from Twitter in March-

April, 2014.

Thai Unsegmented languages, such as Thai, Lao,

Myanmar, and Kumer, are also prevalent in South

East Asia and are becoming increasingly important

targets of natural language processing. Thus we also

conducted an experiment on Thai, using the standard

InterBEST 2009 dataset (Kosawat, 2009). Since it

is reported that the “novel” subset of InterBEST has

relatively low precision, we used this part with a ran-

dom split of 10K sentences for supervised learning,

30K sentences for unsupervised learning, and a fur-

ther 10K sentences for testing.

5.2 Training Settings

Because Sun et al. (2012) report increased accuracy

with three tags, {B,I,E}6, we also tried these tags

in place of the binary tags described in Section 4.2.

This modification resulted in 6 possible transitions

out of 32 = 9 transitions, whose computation fol-

lows from the binary case in Section 4.2. We used

normal priors of truncated N(1, σ2) and N(0, σ2)
for λ0 and λ1 · · ·λK , respectively, and fixed the

CRF regularization parameter C to 1.0, and σ to 1.0
by preliminary experiments on the same data.

For the feature templates, we followed Sun et al.

(2012). In addition to those templates, we used char-

acter type bigrams, where the ‘character type’ was

defined by Unicode blocks (like Hiragana or CJK

Unified Ideographs for Chinese and Japanese) or

Unicode character categories (Thai).

To reduce computations by restricting the search

space appropriately, we employed a Negative Bi-

nomial generalized linear model on string features

(Uchiumi et al., 2015) to predict the maximum

length of a possible word for each character position

in the training data. Therefore, the upper limit of L
in (11) and (13) was Lt for each position t, obtained

6The B, I, and E tags mean the beginning, internal part, and

end of a word, respectively.

东软集团 19

游景玉 17

任尧森 17

南昆铁路 16

东方红三号”卫星 13

刘积仁 13

ｉｎｔｅｒｎｅｔ 11

东宝 11

张肇群 10

彭云 10

玲英 10

抚州 10

亚仿 10

南丁格尔 9

中远香港集团 7

海尔-波普彗星 7

第九届全国人民代表大会 6

巨型机 6

にゃん 6
セフレ 6
フォロワー 5
https 4
December 4
トナカイ 3
アオサギ 3
フォロバ 3
じゅん 3
環奈 3
リプ 3
トッキュウジャー 2
リフォロー 2
酔っ払い 2
ツイート 2
クシャミ 2
エタフォ 2
まじかよ 2
ググれ 2
ふりふり 2

(a) MSR (Simplified Chinese) (b) Twitter (Japanese)

Figure 10: New words acquired by NPYCRF. For each

figure, the left column is the words that did not appear

in the provided labeled data, and the right column is the

frequencies NPYCRF recognized in the test data. In Chi-

nese, we found many proper names including company

and person name, and in Japanese, we found many novel

slang words and proper names.

from this statistical model trained on labeled seg-

mentations. We observed that this prediction made

the computation several times faster than, for exam-

ple, using a fixed threshold in Japanese where quite

long words are occasionally encountered.

5.3 Experimental results

Chinese Tables 2 and 3 show IV (in-vocabulary)

and OOV (out-of-vocabulary) precision and F-

measure, computed against segmented tokens. The

results for standard newspaper text indicate that

NPYCRF is basically comparable in performance to

state-of-the-art supervised neural networks (Chen et

al., 2015; Zhang et al., 2016) that require hand tun-

ing of hyperparameters or model architectures. Fig-

ure 10 shows some of the learned words in the test-

set of the Bakeoff MSR corpus. As shown in Ta-

ble 3, NPYCRF also yields higher precision than su-

pervised learning on non-standard text like Weibo,

which is the main objective for this study. Con-

trary to ordinary supervised learning, we can see that

NPYCRF effectively learns many “new words” from

the large amount of unlabeled data thanks to the gen-

erative model, while observing human standards of

segmentation by the discriminative model. Note that

in Weibo segmentation, complete supervision is not



CRF NPYLM NPYCRF Gold

有些 有些 有些 有些
大学生 大学生 大学生 大学生
眼 眼高手低 眼 眼高手低
高手 高手
低 低
， ， ， ，
不屑 不屑于 不屑于 不屑于
于
做 做 做 做
小 小 小 小
事情 事情 事情 事情
。 。 。 。

王思斌 王 王思斌 王思斌
思
斌

， ， ， ，
男 男 男 男
， ， ， ，

１９４９年１０月 １９４９年 １９４９年１０月 １９４９年１０月
１０月

生 生 生 生
。 。 。 。

Figure 11: Example of segmentation of the SIGHAN

Bakeoff MSR dataset made with supervised (CRF), un-

supervised (NPYLM), and semi-supervised (NPYCRF)

models in comparison with gold segmentations (Gold).

“眼高手低” is a proverb and “王思斌” is a full name of a

person.

available in practice. In fact, we realized that the

Weibo segmentations were given automatically by

an existing classifier, and contain many inappropri-

ate segmentations, while NPYCRF finds much “bet-

ter” segmentations.

Figure 11 compares the results of CRF, NPYLM,

and NPYCRF with the gold segmentation. While

proverbs like “眼高手低” (wide vision without ac-

tion) are correctly captured from the unlabeled data

by NPYLM, it is sometimes broken by CRF through

integration. In another case, the name of a per-

son is properly connected because of the informa-

tion provided by the CRF. This comparison shows

that there is still room for improvement in NPYCRF.

Section 6 discusses future research directions for im-

provements.

Japanese and Thai Figure 12 shows an example

of the analysis of Japanese Twitter text. Shaded

words are those that are not contained in labeled

data (BCCWJ core) but were found by NPYCRF.

Many segmentations, including new words, are cor-

rect. We expect NPYCRF would perform better with

more unlabeled data that are easily obtained.

Tables 4 and 5 show the segmentation accuracies

of the Twitter data in Japanese and novel data in

いや 他 で も 普通 に する よ シシルス サーチ 用 に
ボーナス 持ちピンとかもあるし
誰だ スズカ エルフォトンに ぶっこんだの…
電車 で 座っ て ん だ けど 、 目 の 前 が 酔っ払いが
吊革でフラフラしててハラハラする…手遅れにな
らないうちに離脱するか…
ひこ にゃん 音頭だ にゃん♪ ひこ にゃん ひこ
にゃん ひこ にゃん にゃんっ
ほんとですよほんと嬉しい くっそ倍率 やばそう、
、、ほんとそれ！！ みほりんと参戦したいまぢで
みほりんままにも会いたい
初めまして♪私は 絢瀬 絵里役の 鈴々 蝶です♪似
てないですが、応援してくれると嬉しいです♪
ちょくちょく 絡みだすならな w w wこれからもちょ
くちょく絡むからよろしく (｀ω´)

Figure 12: Samples of NPYCRF segmentation of Twit-

ter text in Japanese that are difficult to analyze by ordi-

nary supervised segmentation. It contains a lot of novel

words, emoticons, and colloquial expressions that are not

contained in the BCCWJ core text (shaded).

Thai. While there are no publicly available results

for these data (the InterBEST testset is closed dur-

ing competition), NPYCRF achieved better accura-

cies than vanilla supervised segmentation based on

CRF. Considering that many new words were found

in Figure 12, for example, we believe NPYCRF is

quite competitive thanks to its ability to learn the in-

finite vocabulary, which it inherits from NPYLM.

6 Analysis

As shown in Figure 11, NPYCRF makes good use

of NPYLM but sometimes ignores its prediction by

falling back to CRF, yielding suboptimal perfor-

mance. This is mainly because the geometric in-

terpolation weight λ0 is always constant and does

not vary according to the input. For example, even

if the substring to segment is very rare in the la-

beled data, NPYCRF trusts the supervised classi-

fier (CRF) with a constant rate of 1/(1+λ0) in the

log probability domain. To alleviate this problem,

Model IV OOV F

CRF 0.939 0.706 0.916

NPYCRF 0.947 0.708 0.921

Table 4: Accuracies for Twitter text in Japanese.

Model IV OOV F

CRF 0.961 0.409 0.948

NPYCRF 0.959 0.362 0.954

Table 5: Accuracies for InterBEST novel dataset in Thai.



it is necessary to change λ0 depending on the in-

put string in a log-linear framework.7 While this

might be achieved through Density Ratio estimation

framework (Sugiyama et al., 2012; Tsuboi et al.,

2009), we believe it is a general problem of semi-

supervised learning and is beyond the scope of this

paper.

This issue also affects the estimation of λ0 as a

scalar: that is, we found that λ0 often fluctuates dur-

ing training because Λ (which includes λ0) is esti-

mated using only limited 〈Xl, Yl〉. In practice, we

terminated the EM algorithm in Figure 9 early af-

ter a few iterations. Therefore, with a more adaptive

semi-supervised learning framework, we expect that

NPYCRF will achieve higher accuracy than the cur-

rent performance.

7 Conclusion

In this paper, we presented a hybrid genera-

tive/discriminative model of word segmentation,

leveraging a nonparametric Bayesian model for un-

supervised segmentation. By combining CRF and

NPYLM within the semi-supervised framework of

JESS-CM, our NPYCRF not only works as well

as the state-of-the-art neural segmentation without

hand tuning of hyperparameters on standard cor-

pora, but also appropriately segments non-standard

texts found in Twitter and Weibo, for example, by

automatically finding “new words” thanks to a non-

parametric model of infinite vocabulary.

We believe that our model lays the foundation for

developing a methodology of combining nonpara-

metric Bayesian models and discriminative classi-

fiers, as well as providing an example of semi-

supervised learning on different model structures,

i.e. Markov and semi-Markov models for word seg-

mentation.
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