
Investigation of Information Processing
Mechanisms in the Human Brain during

Reading Tanka Poetry

Anna Sato1[0009−0003−0297−938X], Junichi Chikazoe2[0000−0003−4155−1370],
Shotaro Funai2[0000−0002−2451−1935], Daichi Mochihashi3[0000−0003−0344−5382],

Yutaka Shikano4,5[0000−0003−2107−7536], Masayuki
Asahara6[0000−0002−5178−7275], Satoshi Iso7[0000−0002−2492−5396], and Ichiro

Kobayashi1[0000−0001−7789−475X]

1 Ochanomizu University, Tokyo, Japan
{g1920519,koba}@is.ocha.ac.jp

2 Araya Inc., Tokyo, Japan
{chikazoe junichi, funai shotaro}@araya.org

3 Institute of Statistical Mathematics, Tokyo, Japan
daichi@ism.ac.jp

4 Gunma University, Gunma, Japan
yshikano@gunma-u.ac.jp

5 Institute for Quantum Studies, Chapman University, Tokyo, Japan
shikano@chapman.edu

6 National Institute for Japanese Language and Linguistics, Tokyo, Japan
masayu-a@ninjal.ac.jp

7 High Energy Accelerator Research Organization, Ibaraki, Japan
iso@post.kek.jp

Abstract. Recent advances in non-invasive brain function measurement
technologies, such as functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG), and the development of machine learn-
ing techniques, including deep learning, have led to increased research
on the elucidation and quantitative understanding of information pro-
cessing processes in the human brain. Since the emergence of word2vec,
which represents the meaning of natural language words as vectors, fea-
tures of language stimuli given to the human brain have been represented
using large language models in natural language processing and used to
estimate brain states. In this study, we used GPT-2, which is known to
perform well as a feature for predicting brain states, and investigated
the information processing processes in the human brain when reading
Japanese short poems, i.e., tanka poetry. In particular, we investigated
the hubness of the regions of interest in the brain by applying the PageR-
ank algorithm. As a result, we have found that the cingulate cortex and
the insula, which are said to be related to emotion, have hubness in brain
regions, while occipital lobe, which are not said to be related to emotion,
have also hubness.

Keywords: Language Processing · Deep learning models · Neuroscience
· fMRI · Emotion.
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1 Introduction

In recent years, there has been a growing interest in exploring the relationship
between deep learning models (DLMs) and the human brain. DLMs have been
developed and inspired by the structure and behavior of the human brain, and
have been trained on massive amounts of data, which has allowed them to achieve
impressive result in various fields such as computer vision [1–3], natural language
processing [4–8], speech recognition [9, 10], and many others.

They also helps in understanding human cognitive processes and brain func-
tions. The objective of this study is to elucidate the processing prosess of emotion
in the human brain. In particular, we will investigate the information processing
induced by the stimulus of reading tanka poetry.

2 Related Work

Recent studies suggest that the hidden representations of various DLMs have
shown to linearly predict human brain activity [11–13]. Since the introduction of
word2vec [7], large language models have been utilized in neuroimaging research
to investigate how the human brain processes language [14–20]. By presenting
human participants with language stimuli, such as sentences or individual words,
and measuring their brain activity, researchers can build models that predict
the neural activity patterns in response to these stimuli and decode words and
sentences from brain states [20].

Those DLMs have a hierarchical structure, and researchers have been inves-
tigating whether the hierarchical structure of DLMs corresponds to the hierar-
chical organization of the human brain. Convolutional neural networks (CNNs)
have been suggested to correspond to the concept of hierarchical processing in
human visual processing [21]. Kawasaki et al [22] used a deep learning model to
predict brain states under visual and verbal stimuli, and investigated the process-
ing transitions through analysis of these states using representation similarity
analysis (RSA) [23]. However, there has been limited research on the relation-
ship between the hierarchy of DLMs and the hierarchy in the human brain under
language stimuli.

In this study, we chose GPT-2 as a model for estimating brain activity be-
cause it has been shown that the prediction of brain states by using GPT-2 as
language features significantly correlates with semantic comprehension [16, 18,
24]. We will construct an encoding model that predicts brain activity from the
feature of each layer of GPT-2 and examine hierarchical processing in the brain
when reading a text. By using a deep learning model that processes natural
language as a working model, we investigate emotional activities in the human
brain that are similar to the sensitivity and sensation induced by tanka, a verbal
art form, instead of dealing with emotions expressed as direct responses in the
human brain under various stimuli.
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Fig. 1: Overall process: the features of tanka are represented by GPT-2. representation
similarity analysis (RSA) is applied to the brain activity data predicted by the encoding
model based on the features. The representation dissimilarity matrix (RDM) obtained
by RSA is regarded as an adjacency matrix, and the PageRank algorithm is applied to
determine the hubness of the regions of interest (ROI) of brain activity stimulated by
poetic and unpoetic sentences.

3 Analysis of Brain Activity under Language Stimuli

Figure 1 shows an overview of the method in this study.
To compare brain activities evoked by tanka poetry, and unpoetic sentences,

we 1) extract features using tanka poetry that presented in the experiment as
input; 2) construct an encoding model to predict brain activity from the fea-
tures; 3) separate the predicted brain activity under stimuli labeled as poetic or
unpoetic; 4) apply RSA to the brain activity and create a RDM that shows the
connectivity of ROIs in the brain; and 5) apply PageRank algorithm [25] to the
matrix and find the hubness in ROIs.

3.1 Brain Activity Data and Experimental Tasks

Brain activity data were collected from 15 male subjects and 17 female subjects.
All subjects are right-handed and native Japanese speakers, aged from 18 to
34 years. Functional scans were collected using a 3.0 T scanner at the National
Institute for Physiological Sciences (NIPS) with repetition time (TR) = 750 ms,
and voxel size = 2.0mm × 2.0mm × 2.0mm.

As experimental tasks, subjects read and evaluate 300 sentences from the
Balanced Corpus of Contemporary Written Japanese (BCCWJ) [26]. The sen-
tence dataset consists of 150 tanka, 31-syllable poems originated in Japan, and
150 prose that have approximately 31 characters. Each tanka/prose was divided
into three lines, where only the first line was displayed for the first three sec-
onds, up to the second line for the next three seconds, and all three lines for the
following three seconds. In the next three seconds, a slide with the question “Do
you feel that this is poetic?” written on it is displayed, and the subjects answers
“Yes” or “No” by pressing a button. One trial is conducted in 12 seconds. These
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data were collected during six scanning sessions with breaks in between, and
each session had 50 trials (25 tanka and 25 prose). The sentences were presented
in a different random order for each subject.

The study was approved by the Ethical Committee of the National Institute
for Japanese Language and Linguistics, the National Institute for Physiological
Sciences of Japan and the Institute of Statistical Mathematics.

3.2 Encoding Model

The method employed in this study to construct an encoding model is the one
by Naselaris et al [27]. As a method for constructing the encoding model, linear
regression is performed between the features extracted from the data that stimu-
late the human brain and the brain activity state under stimulation, and weights
are learned so that the measured brain activity pattern and the predicted brain
activity pattern are close to each other. In general, ridge regression is applied
to linear regression, and by observing the regression coefficients, it is possible to
observe the behavior of the voxels.

3.3 Representational Similarity Analysis

Representational Similarity Analysis (RSA) uses correlation matrices to mea-
sure the degree of similarity or dissimilarity between representational patterns,
proposed by Kriegeskorte et al [23, 28]. RSA measures the distance between the
representational geometries of different brain regions or conditions and calculates
the dissimilarity between different neural activation patterns to create Repre-
sentational Dissimilarity Matrix (RDM) which refers to the matrix of pairwise
distance between representational patterns.

In this study, correlation distance (1 − Pearson’s correlation coefficient) is
used as a measure of similarity. We measure the functional dissimilarity at each
time point for each ROI, and then calculate the dissimilarity between the cre-
ated time × time RDMs to create a ROI × ROI RDM, which represents the
connectivity among ROIs (see, Figure 2). The brain region division atlas used
in the experiments was Destrieux Atlas [29] provided by FreeSurfer8.

3.4 PageRank Algorithm

We used PageRank algorithm to identify regions in the brain that serve as hubs
in the linkage among regions of interest (ROIs). The PageRank algorithm [25]
is a widely used algorithm for ranking web pages, and outputs a PageRank
score which indicates a ranking of importance. The application of the PageRank
algorithm is not limited to Web networks but can also be extended to social and
brain networks [30–32]. The PageRank score of rk+1(Pi) is obtained by a power
method as follows.

rk+1(Pi) =
∑

Pj∈BPi

rk(Pj)

|Pj |

8 https://surfer.nmr.mgh.harvard.edu/
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Fig. 2: Creation of a ROI × ROI RDM matrix by RSA

The PageRank score for page Pi is dependent on the PageRank scores for each
page Pj contained in BPi , the set of all pages linking to page Pj , dividing by
|Pi|, the number of outbound links page Pj .

4 Experiments

4.1 Encoding models for the experiments

Encoding models are constructed to estimate the brain state from the features
of linguistic stimuli given to the human brain. Specifically, we performed ridge
regression from the features extracted from each layer of GPT-2 to brain activity.
When a tanka/prose slide was displayed, the language stimulus of ti is the pre-
sented sentence, and when a question slide was shown, the language stimulus is
the sentence which is added the question sentence to the preceding tanka/prose.

The features of language stimuli extracted from each layer of GPT-2 are
1024 dimensions, but we reduced them to 300 dimensions using principal com-
ponent analysis (PCA) to mitigate the risk of overfitting the model. In order
to account for the hemodynamic delay when observing blood oxygenation level
dependent (BOLD) signal by fMRI, we concatenated seven features from ti−9

to ti−3 to predict brain activity at time ti. Of the six sessions, one session was
test data and the remaining five sessions were training data for building an en-
coding model, and then predicted brain activities for all sessions were collected.
This regularization coefficient is chosen amongst ten values log-spaced between
101 and 106 by 5-fold Cross-Validation. For each layer and for each subject, the
regularization coefficient is found as the value that led to the best performance
with a Pearson correlation between the predicted and measured brain activities.

4.2 Experimental settings

The features of tanka and prose are represented by GPT-2 in this study. We
used a pretrained Japanese GPT-2 model with 24 layers9, provided by Hugging

9 https://huggingface.co/rinna/japanese-gpt2-medium
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Face. We fine-tuned GPT-2 on 3571 tanka in BCCWJ that were not used in
the experiment. We further fine-tuned GPT-2 for binary text classification for
each subject, whether a subject felt it was poetic or not in the experiment.
In the second fine-tuning, the training data consisting of 250 sentences, which
were displayed during five scanning sessions used for encoding model training.
To investigate how information can be changed across each layer of GPT-2, we
extracted text features from each layer.

4.3 Results

We analyzed brain activity data from 19 subjects of 32 subjects who participated
in the experiment, selected with a statistical threshold of p < 0.01. The p-values
were calculated as the fraction of 200 random sequences in which the correlation
with the measured data was greater than or equal to the correlation between the
predicted and measured data. Furthermore, the voxels that were corrected with
FDR at q < 0.05 and had positive correlation with the measured brain activity
were extracted and used for analysis.

In Figure 3, we show the accuracy predicted by an encoding model. Pearson
correlation coefficient was used for evaluating the accuracy. Figure 3a visualizes
the prediction accuracy on the cortical surface for one subject. The correla-
tion coefficient between the predicted and mesured brain activity patterns was
computed for each voxel and for each scanning session. The average correlation
coefficient across all sessions is then calculated. The map shows only voxels that
were multiple-corrected with a false discovery rate (FDR) correction at q < 0.05.
Figure 3b shows that the prediction accuracy of each layer of GPT-2. The cor-
relation coefficients for each layer were averaged across subjects, and across
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Fig. 3: Performance of the encoding model: (a)Brain map of prediction accuracy for each
voxel at the 24th layer. Each correlation coefficient was averaged across the six sessions.
(b)Prediction accuracy for each layer. Each correlation coefficient was averaged across
the voxels that were FDR-corrected and have positive correlation between the predicted
and measured brain activity.
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those voxels that are FDR-corrected and have positive correlation between the
predicted and measured brain activity. The layer with the highest correlation
coefficients, which was the 10th layer, is highlighted in red. Prior studies have
also reported better prediction accuracy in the middle layer of DLMs [33–35].

We created RDMs for each layer representing the behavior of the ROI in
each of the predicted brain activities labeled “poetic” and “unpoetic” based on
our experiments. The dissimilarity between 48 RDMs of 2(poetic/unpopetic)
× 24(the number of hierarchies), each averaged across subjects, was calculated
(see, Figure 4a). Figure 4b shows the results of dimensional compression of the
above RDM into three dimensions using UMAP [36].

Next, we applied the PageRank algorithm to a similarity matrix of a ROI ×
ROI RDM to obtain PageRank scores for each ROI and detect hub regions for
each poetic and unpoetic state. PageRank scores were calculated for each state
and averaged across subjects. The result of subtracting the PageRank score of
the unpoetic state from the PageRank score of the poetic state are visualized
in Figure 5a; the 1st layer as the lowest layer, the 13th layer as middle layer
and the 24th layer as the highest layer. The regions colored red have higher
PageRank score when the brain feels poetic, indicating that the regions have
higher “hubness”, while the regions colored blue have higher hubness when the
brain did not feel poetic. Figure 5b shows the subtracted PageRank scores after
averaged in each regions. We selected four regions where there were significant
differences: the cingulate cortex (green), the occipital lobe (orange), the parietal
lobe (red) and the frontal lobe (blue). Layers in which significant differences were
found were marked with a star (p < 0.01, a two-sample t-test).
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Fig. 4: (a)RDM of hidden layer for each state. (b)The results of dimensional compres-
sion of a layer × layer RDM
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Fig. 5: PageRank scores of poetic state vs. unpoetic state: (a)Brain map of the sub-
tracted PageRank scores at 1st, 13th and 24th layer as low, middle and high layer
respectively. (b)The subtracted PageRank scores after averaged in each region(*p <
0.01).

4.4 Discussion

The information is gradually transitioning in Figure 4b, indicating that the brain
activity that represented by each layer of GPT-2 changes as the hierarchy shifts.

The cingulate cortex that had a high PageRank score in Figure 5a is involved
in a wide range of cognitive and emotional processes. It is said to be the one
which plays a key role in attention, decision making, memory, and emotion reg-
ulation [37, 38]. In a previous study of brain activity during reading of poetry
and prose [39], a part of the cingulate gyrus was cited as a brain region that was
activated as the emotionality of the text increases. The insula, which also had
the same high PageRank score is also said to be an area involved in emotions
and experiences [40, 41]. In the region around the cingulate cortex and the left
insula, the subtracted values were consistently positive through almost all layers.
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The occipital lobe’s PageRank score was also elevated when participants
felt poetic. However, this region is primarily responsible for processing visual
information and is typically activated while reading a text, and those well-known
functions do not explain why the PageRank score was high when feeling poetic.

In the parietal and frontal lobes, PageRank scores were high in all layers
when not feeling poetic (see, Figure 5b). Further investigation is needed to fully
understand these results.

5 Conclusion

In this study, using brain activity data measured by fMRI while reading Japanese
tanka poetry and prose, we constructed an encoding model to predict brain state
from the features extracted from the hidden layers of a DLM. We especially used
GPT-2 to represent the feature of those tanka poetry and prose.

We investigated the ROIs that work as hubs of information connectivity in
the brain when feeling poetic by applying the PageRank algorithm to a matrix
of connectivity between ROIs. By this, we found a significant importance of the
cingulate cortex and the left insula, which has been previously reported to be
activated when a person feeling more poetic. On the other hand, we also found
results that could not be explained by previous studies, such as the finding
of hubness in the occipital lobe at higher layers of GPT-2 and hubness in the
parietal and frontal lobes when not feeling poetic. As future work, we will further
investigate the results obtained in this study.
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