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ABSTRACT

We present a generative model for predicting the sung melodic con-
tour, i.e., F0 contour, with expressive dynamic fluctuations, such as
vibrato and portamento, for a given musical score. Although several
studies have attempted to characterize such fluctuations, no system-
atic method has been developed for generating the F0 contour with
them in connection with musical notes. In our model, the relation-
ship between a musical note sequence and F0 contour is directly
learned by a mixture of Gaussian process experts. This approach al-
lows us to automatically characterize the fluctuations by utilizing the
kernel function for each Gaussian process expert and predict the F0

contour for an arbitrary musical note sequence. Experimental results
show that our model can better predict the F0 contour than a baseline
method can. Additionally, we discuss the effective musical contexts
and the amount of training data for the prediction.

Index Terms— Singing voice, fundamental frequency (F0),
mixture of Gaussian process experts, multiple kernel learning,
Markov chain Monte Carlo method

1. INTRODUCTION

The goal of this study is to build a generative model that can char-
acterize the singing style of a singer in sung melodic contours, i.e.,
F0 contours, and predict the F0 contour that reflects the personal
singing style for an arbitrary musical score. Although no firm def-
inition has yet been established for “singing style” in music infor-
mation processing research, several studies have reported the rela-
tionship between singing styles and signal features, such as singing
formant [1,2] and singing fluctuations [3–6]. Specifically, various re-
search efforts have attempted to characterize the fluctuations, such as
vibrato and portamento [5,7–9]. Vibrato is a quasi-periodic variation
in the frequency of a sustained musical note and is described with the
following parameters: rate, extent, waveform, regularity, time delay
until vibrato onset, and the percentage of vibrato present for the du-
ration [8–13]. Portamento is a gradual sliding of pitch smoothly and
continuously from one note to another when well-separated musical
notes are sung in the same breath [14,15]. Accordingly, modeling the
expressive fluctuations enables us to characterize the singing style of
a singer, and it is potentially very beneficial for any singing voice ap-
plication, such as singing style conversion, singer identification, and
the synthesis of more varied singing voices [16–20].

Several application systems that characterize the fluctuations
have been reported. [21] proposed a method for calculating the vi-
brato rate and extent to evaluate singing skill automatically. [8] veri-
fied the vibrato features (rate, extent, and duration) for synthesizing
more varied singing voices. [9] modeled vibrato and portamento as
the sum of the periodic modulation plus a slow continuous variation,
and used the estimated parameters for singer identification. In [7]
and [22], a generative process for an F0 contour was proposed using

Fig. 1. Musical note sequence and singing voice F0 contour

a second-order differential equation for singing style conversion.
Although these studies attempted to characterize the fluctuations as
a cue for singing skill and style, no systematic method has been
developed for generating the various fluctuations in connection with
the musical contexts as shown in Fig. 1. The fluctuations singers use
differ depending on the musical score, and so it is important to learn
this relationship. In singing voice synthesis based on hidden Markov
models (HMMs), F0 contours are characterized by Gaussian distri-
butions for context-dependent states [18, 19, 23, 24]. However, an
HMM is not always an appropriate model, because its hidden-state
space is discrete in spite of the continuous and rapid changes in the
fluctuations. Furthermore, a context-dependent decision-tree clus-
tering has been employed to make robust models for new contexts,
but averaging the F0 contours of a leaf node of the tree causes an
over-smoothing effect.

In this paper, we propose a generative model that uses a mixture
of Gaussian process experts (MoGPEs) [25] to predict F0 contours
with expressive fluctuations for a given musical score. Each GPE
directly learns the relationship between the musical contexts and an
expressive fluctuation utilizing the kernel function. The MoGPEs
represents the continuous transition of the fluctuations as a mixture
model, and then the F0 contour for an arbitrary musical score is gen-
erated by the predictive distribution of the MoGPEs. One merit of
this representation is that since the F0 contour is not deterministic,
i.e., it varies across singing styles, the fluctuations are characterized
stochastically. Thus we design the kernel functions for characteriz-
ing the fluctuations elaborately. Experimental results show the effec-
tiveness of using the MoGPEs in terms of predicting the F0 contour
for a new musical score. We also discuss the effective musical con-
texts and the amount of training data for learning our model.

2. GENERATIVE MODELING OF F0 CONTOUR

First, we briefly explain the input and output features for the MoG-
PEs. As shown in Fig. 1, we use singing voice signals synchronized
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Fig. 2. An example allotment of input space in the MoGPEs. Each
elliptical region represents a two-dimensional full covariance Gaus-
sian distribution. The shaded regions are owned by the same GPE.

with melodies, which are represented in standard MIDI file format.
Fig. 1 (a) shows the musical note sequence of a melody. Input vector
xt consists of the position and duration of the current musical note
on the second time scale, the relative pitch between the current note
and the preceding note, and the relative pitch between the current
note and the succeeding note, all of which are extracted from this
sequence every 10 ms. It is certainly possible to add phonemes la-
bels and dynamic marks such as crescendo to the input vector. On
the other hand, we use the backward-differential values of the F0

contour as the outputs {yt}Tt=1 to remove musical note information
from the F0 contour [Fig. 1 (c)]. The F0 value is estimated every 10
ms using YIN [26]. Then, the F0 frequency in hertz is converted to
cents by

ycent = 1200 log2
yHz

440× 2
3
12

−5
, (1)

so that one equal-tempered semitone corresponds to 100 cents.
Next, we explain the standard GP regression [27]. Suppose that

we have T observations as a training set D = {xt, yt}Tt=1. When
output vector y = [y1, . . . , yT ]

T follows a GP, the probabilistic den-
sity function is represented as a multivariate Gaussian distribution

p(y) = GP(y;0,K + η2I) = N (y;0,K + η2I), (2)

where K is a Gram matrix whose element is given by Ki,j =
k(xi,xj). k(xi,xj) is calculated by the kernel function, which
defines “similarity” between xi and xj . η2 and I denote the noise
variance and identity matrix, respectively. The goal of GP regression
is to infer the predictive distribution of y∗ given a new input vector
x∗. The predictive distribution is given by

p(y∗|y, X,x∗) = N (y∗;μ∗, σ
2
∗), (3)

μ∗ = kT
∗ (K + η2I)−1y,

σ2
∗ = k(x∗,x∗)− kT

∗ (K + η2I)−1k∗,

where k∗ is the column Gram vector, which consists of the elements
k(xt,x∗) (t = 1, . . . , T ). The exemplars in the training set con-
tribute to the prediction based on their correlation to the new input,
as measured in input space.

The requirement for the kernel function is that the Gram matrix
should be positive semi-definite and symmetric. On the assumption
that the output signal is stationary, the squared exponential (SE) co-
variance function and the rational quadratic covariance function are
generally used. However, as shown in Fig. 1, the output signal is
not always stationary because a singer sings while using different
fluctuations depending on the musical note sequence. We employ
the MoGPEs to model the expressive fluctuations which have non-
stationary dynamics.

In the MoGPEs, as shown in Fig. 2, the input space is probabilis-
tically divided by a gating network [28] into regions within which

Fig. 3. Graphical representation of our model

specific separate experts make predictions. Each GPE learns differ-
ent characteristics of the fluctuation. Of course, the learning of the
experts and that of the gating network are intimately coupled. Fi-
nally, the outputs are represented as the mixture of these experts.
Two types of the MoGPEs have been proposed [25, 29], and the dif-
ference between these formulations is whether or not a full genera-
tive model over inputs and outputs is defined. Since [25] defines a
full generative model of the MoGPEs that has a number of potential
advantages, such as the ability to deal with partial specified data and
infer inverse functional mappings, we utilize this formulation. The
generative process is as follows:

1. Construct a partition of T observations into R groups using
the Dirichlet-multinomial distribution. This assignment is de-
noted by using a set of the indicator variables {zt}Tt=1.

2. For each grouping of indicators {zt : zt = r}, sample the
input space parameters θxr ≡ {μr,Σr}. θxr defines a full-
covariance Gaussian.

3. Given the parameters θxr for each group, sample the input
vectorsXr ≡ {xt : zt = r}.

4. For each group, estimate parameters θGP
r for the GP expert.

5. Using the input vectors Xr and parameters θGP
r for the in-

dividual groups, formulate the GP output covariance matrix
and sample the set of output values, yr ≡ {yt : zt = r},
from the joint Gaussian distribution.

The graphical representation of this process is shown in Fig. 3. The
full joint distribution is given by

p({xt, yt}Tt=1, {zt}Tt=1, {θGP
r }Rr=1, {θxr }Rr=1|Ω) (4)

=

R∏
r=1

[
p(θxr |Ω)p(Xr|θxr )p(yr|Xr, θ

GP
r ,Ω)

]
× p({zt}Tt=1|Ω),

where R and Ω are the number of experts and hyper-parameters,
respectively, and we directly represent the indicators {zt}Tt=1 and
sample them to capture their dependence using the Gibbs sampler
[25]. The individual distributions in Eq. (4) are defined as follows:

p({zt}Tt=1|Ω) = Γ(α)

Γ(α+ T )

R∏
r=1

Γ(Tr + α/R)

Γ(α/R)
, (5)

p(θxr |Ω) = N (μr;m0,Σr/β0)W(Σ−1
r ;W 0, ν0), (6)

p(Xr|θxr ) = N (Xr;μr,Σr), (7)

p(yr|Xr,θ
GP
r ,Ω) = GP (

yr;0,Kr + η2
rIr

)
, (8)

where α is the hyper-parameter of the Dirichlet-multinomial distri-
bution. Tr , Ir , η2

r , andW denote the number of elements inXr , the
Tr × Tr identity matrix, noise variance, and Wishart distribution,
respectively.
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Fig. 4. Gram matrix based on multiple kernel learning
The Gram matrix Kr is calculated using the input vectors Xr

and the parameters θGP
r . Using multiple kernel leaning [30, 31], we

represent the function as the linear combination of kernel functions:

kr(xi,xj) = w2
r

M∑
m=1

ψr,mkr,m(xi,xj), (9)

where θGP
r represents the amplitudew2

r and the weight ψr,m of each
kernel, and then xi,xj ∈ Xr,

∑M
m=1 ψr,m = 1. M is the num-

ber of kernel functions. For the input vector consisting of various
features, we define kr,m(xi,xj) as the product of two kernels

kr,m(xi,xj) = k(p)
r,m(x

(p)
i , x

(p)
j )k(c)

r,m(x
(c)
i ,x

(c)
j ), (10)

where k
(p)
r,m(x

(p)
i , x

(p)
j ) and k

(c)
r,m(x

(c)
i ,x

(c)
j ) denote the position

kernel and musical context kernel, respectively, as shown in Fig. 4.
The position kernel represents the similarity between the positions
in the musical notes, whereas the musical context kernel represents
the similarity between the musical contexts. Here vector xi is di-
vided into x(p)

i for the position and x(c)
i for the musical context, and

then the kernel functions are calculated for each variable. To capture
the continuity and periodicity of the expressive fluctuations, the SE
covariance function and the periodic covariance function are used
for the position kernel:

k(p)
r,m(x

(p)
i , x

(p)
j ) = exp

(
− (x

(p)
i − x

(p)
j )T(x

(p)
i − x

(p)
j )

2l
(p)
m

2

)
,

k(p)
r,m(x

(p)
i , x

(p)
j ) = exp

(
−2 sin2

(
l
(p)
m

2π
(x

(p)
i − x

(p)
j )

))
.

For the musical context kernel, we use the SE covariance function

k(c)
r,m(x

(c)
i ,x

(c)
j ) = exp

(
−1

2
(x

(c)
i − x

(c)
j )TΛ(x

(c)
i − x

(c)
j )

)
,

Λ−1 = diag(l
(c)
m,1

2
, l

(c)
m,2

2
, . . . , l

(c)
m,Dc

2
),

where Dc is the number of dimensions of x(c)
i . The parameters and

the hyper-parameters are Θ = {z1, . . . , zT , θx1 , . . . , θxR, θGP
1 , . . . ,

θGP
R } andΩ = {α,m0,W 0, β0, ν0, l

(p)
1 , . . . , l

(p)
M , l

(c)
1,1, . . . , l

(c)
M,Dc

},
respectively. For information on how to set up the hyper-parameters,
see the footnote of Section 4.

Finally, we derive the predictive distribution of y∗ for a new
input vector x∗. The predictive distribution is given by

p(y∗|{yt,xt}Tt=1,x∗,Θ,Ω) (11)

=

R∑
r=1

p(y∗|yr, Xr,x∗, z∗ = r, θGP
r )p(z∗ = r|x∗, θ

x
r ),

where the first term and the second term can be written as

p(y∗|yr, Xr,x∗, z∗ = r, θGP
r ) = N (y∗;μr,∗, σ

2
r,∗), (12)

μr,∗ = kT
r,∗(Kr + η2

rIr)
−1yr,

σ2
r,∗ = kr(x∗,x∗)− kT

r,∗(Kr + η2
rIr)

−1kr,∗,

p(z∗ = r|x∗, θ
x
r ) =

p(x∗|z∗ = r, θxr )p(z∗ = r)

p(x∗)
, (13)

p(x∗|z∗ = r, θxr ) = N (x∗;μr,Σr), p(z∗ = r) = 1/Tr.

Therefore, the predictive distribution of Eq. (11) can be rewritten as

p(y∗|{yt,xt}Tt=1,x∗,Θ,Ω) = N (y∗;μ∗, σ
2
∗), (14)

μ∗ =
R∑

r=1

crμr,∗, σ
2
∗ =

R∑
r=1

c2rσ
2
r,∗, cr ≡ p(z∗ = r|x∗, θ

x
r ).

Based on this predictive distribution, the F0 contour, {ft}Tm
t=1, is

reproduced by

ft = ot + c− ō, ot =
∑t

n=1 μ∗,n, ō =
∑Tm

t=1 ot/Tm, (15)

where c and Tm are the pitch and duration of a target musical note,
respectively.

The GP regression has been applied to speech synthesis [32,33],
F0 contour prediction of speech [34], voice conversion [35], and mu-
sic performance rendering [36]. In [33], the relationship between the
input features, which consist of linguistic information, and the out-
put, which consists of the spectral feature calculated at each frame,
was learned. This method outperformed conventional HMM-based
speech synthesis. Our model is related to these approaches but dif-
fers from them in that it capitalizes on characterizing the dynam-
ics of the fluctuations elaborately utilizing the MoGPEs and various
kinds of kernel functions, which was not considered in these earlier
approaches. Furthermore, using GP regressions as experts, we gain
the advantage that computation for each expert is cubic only in the
number of data points in its region, rather than in the entire dataset.

3. INFERENCE

All the necessary parameter updates are straightforwardly carried out
using aMarkov ChainMonte Carlo (MCMC) and ExpectationMaxi-
mization (EM) scheme [37]. Specifically, Gibbs sampling is used for
the inference of {zt}Tt=1 and {θxr }Rr=1 [25]. Then we consider the
multivariate Gaussian distribution of Eq. (8) as the sum of indepen-
dent Gaussians, and then employ the EM algorithm for the inference
of {θGP

r }Rr=1 [31, 38].

4. EVALUATION

We tested our model in terms of the predictive performance of the
output for a new input vector. In this experiment, we used the F0

contours and the MIDI signals of melodies annotated manually in
the AIST annotation [39] (RWC-MDB-P-2001 [40], Song No. 38,
39, 42, 44, 45, 46, 64, 72, 74, and 76). These songs are sung by
an identical singer. Although the F0 contour should essentially be
estimated from the acoustic signal, we used these data to evaluate
the upper limit of the performance of our model.

Input vector xt and the backward-differential value yt are cal-
culated every 10 ms from the musical note sequence and the F0 con-
tour, respectively. Since the F0 values are not obtainable in the un-
voiced segments, we removed those segments. We used song No.
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Table 1. Average RMSEs for MoPRs and our model (MoGPEs)
Num. of experts 5 10 20 30 40 50
MoPRs 65.6 71.8 59.7 73.1 79.6 56.5
MoGPEs 26.4 25.0 24.0 23.9 23.1 22.3

Fig. 5. Comparison of the prediction results: blue, green, and red
lines correspond to the actual outputs, the result of the MoPRs, and
the result of the MoGPEs, respectively.

38, 39, 42, 44, and 45 for training and song No. 46, 64, 72, 74, and
76 for testing. The training and test data consist of 649.3 sec. and
625.6 sec. of the singing voices, respectively. Using the training
data, parameters Θ are estimated, and then the outputs are predicted
for the input vectors of the test data. We initialize the indicators
as the assignments obtained by k-means clustering of all the input
vectors of the training data. Using the input vectors assigned to each
expert, the input space parameters θxr are initialized. The number of
kernel functions is set atM = 216, and the initial values of θGP

r are
set at w2

r = 100, ψr,1 = 1/M, . . . , ψr,M = 1/M, η2
r = 10 (r =

1, . . . , R). The settings of the hyper-parameters are shown in the
footnote 1. The parameter inference was run for 50 iterations.

As the evaluation measure, we use the root mean square error
(RMSE) between the actual outputs and the predictive means μ∗ for
the input vectors in the test data as follows:

RMSE =
√∑Tt

t=1(yt − μ∗,t)2/Tt, (16)

where Tt is the signal length of the test data. As a conventional
method, we defined a mixture of polynomial regressions (MoPRs) in
which the relationship between the input and the output is modeled
as a mixture of nth order polynomials. Specifically, we replace the
GP regression of Eq. (8) with the polynomial regression [41].

Tab. 1 shows the average RMSEs when the number of experts
is changed. Here we only used song No. 35 for the training. In
the MoPRs we set n at 8, because it was difficult sometimes to sta-
bly estimate the parameters of the higher order polynomials. Our
model outperformed the simple method consisting of the polyno-
mial regressions, and the performance of our model improved as the
number of experts increased. Fig. 5 compares the prediction results
of our model and the MoPRs. We confirmed the effectiveness of

1The hyper-parameters are fixed to α = 1, β0 = 0.1, ν0 = D + 1,
where D is the number of dimensions of the input vector. m0 is set
to the mean value over all the input vectors for training data. W 0 is
set to the inverse matrix of the covariance matrix over all the input vec-
tors divided by ν0. The hyper-parameters of the position kernel are set to
{l(p)m ,m = 1, . . . , 108|0.05, 0.11, 0.23, 0.5} for the SE covariance func-
tions and to {l(p)m ,m = 109, . . . , 216|0.13, 0.15, 0.17, 0.2} for the peri-
odic covariance functions. The hyper-parameters of the musical context ker-
nel are set to {l(c)m,1|1, 2.2, 5}, {l(c)m,2|1, 2.2, 5}, and {l(c)m,3|0.1, 0.55, 3}.

Table 2. Average RMSEs for the number of musical contexts
Num. of musical contexts 1 2 3
MoGPEs 23.8 23.1 22.3

Table 3. Average RMSEs for the number of songs in training data
Num. of songs 1 3 5
MoGPEs 22.3 20.7 20.5

Fig. 6. Reproduction of F0 contour: blue and red lines correspond
to an actual F0 contour and the reproduction, respectively.

using our model to capture the periodic dynamics of the expressive
fluctuations.

Next, we discussed the effective musical contexts and the
amount of training data. To find the effective musical contexts,
we trained our model by selecting some of musical contexts de-
scribed in Section 2, and then we predicted the outputs. The number
of experts is set at R = 50. As shown in Tabs. 2 and 3, as the
number of contexts and the number of songs in the training data
increased, the performance of our model improved.

Fig. 6 shows the reproduction result for an F0 contour obtained
by Eq. (15). The reproduced F0 contour is exactly the same as the
actual F0 contour, but it is still inadequate for predicting the indi-
vidual fluctuations. To further improve the predictive performance,
it is necessary to adjust the number of experts and the amount of
training data. We can sidestep the model selection problem by using
an infinite number of experts and employing the gating network re-
lated to the Dirichlet process to specify a spatially varying Dirichlet
process [25, 29, 42]. Adding the long-term musical note sequence,
the dynamic marks, and the articulation in the musical score to the
input vector as binary variables is also future work. Finally, the F0

contour reproduced by our model should be compared with the F0

contour generated by HMM-based singing voice synthesis.

5. CONCLUSIONS

We proposed a generative model for predicting the sung melodic
contour with the expressive dynamic fluctuations for an arbitrary
musical note sequence. Specifically, each GPE directly learns the
relationship between the musical contexts and an expressive fluctu-
ation utilizing the kernel function, and then the MoGPEs represents
the continuous transition of the fluctuations as a mixture model. The
experimental results showed that our model is promising for predict-
ing the F0 contour for a given musical score.

To further improve the predictive performance, we plan to adjust
the number of experts and the hyper-parameters, and simultaneously
characterize the dynamics of the F0 contour and the voice volume
contour utilizing the MoGPEs. Although our model has great poten-
tial for recognizing and converting singing styles, we have not tested
it yet. In future work, we will evaluate its ability to automatically
classify singing styles and identify singers using Eq. (14), and apply
our model to singing style conversion using a speech manipulation
system such as STRAIGHT [43].
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