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Abstract— Humans perceive continuous high-dimensional in-
formation by dividing it into significant segments such as
words and units of motion. We believe that such unsupervised
segmentation is also important for robots to learn topics
such as language and motion. To this end, we previously
proposed a hierarchical Dirichlet process–Gaussian process–
hidden semi-Markov model (HDP-GP-HSMM). However, an
important drawback to this model is that it cannot divide high-
dimensional time-series data. Further, low-dimensional features
must be extracted in advance. Segmentation largely depends
on the design of features, and it is difficult to design effective
features, especially in the case of high-dimensional data. To
overcome this problem, this paper proposes a hierarchical
Dirichlet process–variational autoencoder–Gaussian process–
hidden semi-Markov model (HVGH). The parameters of the
proposed HVGH are estimated through a mutual learning
loop of the variational autoencoder and our previously pro-
posed HDP-GP-HSMM. Hence, HVGH can extract features
from high-dimensional time-series data, while simultaneously
dividing it into segments in an unsupervised manner. In an
experiment, we used various motion-capture data to show that
our proposed model estimates the correct number of classes and
more accurate segments than baseline methods. Moreover, we
show that the proposed method can learn latent space suitable
for segmentation.

I. INTRODUCTION

Humans perceive continuous high-dimensional informa-
tion by dividing it into significant segments such as words
and units of motion. For example, we recognize words
by segmenting speech waves, and we perceive particular
motions by segmenting continuous motion. Humans learn
words and motions by appropriately segmenting continuous
information without explicit segmentation points. We believe
that such unsupervised segmentation is also important for
robots, in order for them to learn language and motion.

To this end, we previously proposed a hierarchical Dirich-
let process–Gaussian process–hidden semi-Markov model
(HDP-GP-HSMM) [1]. HDP-GP-HSMM is a nonparametric
Bayesian model that is a hidden semi-Markov model whose
emission distributions are Gaussian processes, making it
possible to segment time-series data in an unsupervised
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Fig. 1. Overview of the generative process of the HVGH.

manner. In this model, segments are continuously represented
using a Gaussian process. Moreover, the number of seg-
mented classes can be estimated using hierarchical Dirichlet
processes [2]. The Dirichlet processes assume an infinite
number of classes. However, only a finite number of classes
are actually used. This is accomplished by stochastically
truncating the number of classes using a slice sampler [3].

However, our HDP-GP-HSMM cannot deal with high-
dimensional data, and feature extraction is needed in order to
reduce the dimensionality in advance. Indeed, segmentation
largely depends on this feature extraction, and it is difficult
to extract effective features, especially in the case of high-
dimensional data. To overcome this problem, this paper
introduces a variational autoencoder (VAE) [4] to the HDP-
GP-HSMM. Thus, the model we propose in this paper
is a hierarchical Dirichlet process–variational autoencoder–
Gaussian process–hidden semi-Markov model (HVGH). Fig.
1 shows an overview of HVGH. The observation sequence
is compressed and converted into a latent variable sequence
by the VAE, and the latent variable sequence is divided
into segments by HDP-GP-HSMM. Furthermore, parameters
learned by HDP-GP-HSMM are used as the hyperparameters
for the VAE. In this way, the parameters are optimized in
a mutual learning loop, and appropriate latent space for
segmentation can be learned by the VAE. In experiments,
we evaluated the efficiency of the proposed HVGH using
real motion-capture datasets. The experimental results show
that HVGH achieves more accuracy than baseline methods.

Many studies on unsupervised motion segmentation have
been conducted. However, heuristic assumptions are used in
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Fig. 2. Graphical model of HVGH.

many of them [5], [6], [7]. Moreover, some methods use
motion features such as the zero velocity of joint angles [8],
[9], [10]. However, this assumption usually leads to over-
segmentation [6].

Furthermore, studies have proposed methods of detecting
change points in time-series data in an unsupervised manner
[11], [12], [13], [14]. These are the methods of finding points
with different fluctuations based on previous observations.
However, change points do not necessarily indicate the
boundary of segments.

In some studies, segmentation is formulated stochastically
using hidden Markov models (HMMs) [15], [16], [17], [18].
However, it is difficult for HMMs to represent complicated
motion patterns. Instead, we use Gaussian processes, a type
of non-parametric model that can better represent compli-
cated time-series data compared to HMMs. We confirmed
that our GP-based model can estimate segments more accu-
rately than HMM-based methods [1].

In some studies, the number of classes is estimated by
introducing a hierarchical Dirichlet process (HDP) into an
HMM [15], [19]. An HDP is a method of estimating the
number of classes by assuming an infinite number of classes.
Fox et al. extended an HDP–HMM to make a so-called sticky
HDP-HMM, which prevents over-segmentation by increasing
the self-transition probability [19].

Among methods of combining probabilistic models with
neural networks, a method of classifying complicated data
using a GMM and VAE was proposed [20]. By contrast, our
proposed HVGH is a model that combines a probabilistic
model with VAE for segmenting high-dimensional time-
series data.

II. HIERARCHICAL DIRICHLET PROCESS–VARIATIONAL

AUTOENCODER–GAUSSIAN PROCESS–HIDDEN

SEMI-MARKOV MODEL (HVGH)

Fig. 2 shows a graphical model of our proposed HVGH,
which is a generative model of time-series data. In this
model, cj(j = 1, 2, · · · ,∞) denotes the classes of the
segments, where the number of classes is assumed to be
countably infinite. Probability πc denotes the transition prob-
ability, which is generated from the the Dirichlet process

is parameterized by β, and the β is generated by the
GEM distribution—with the so-called stick-breaking process
(SBP):

β ∼ GEM(γ), (1)

πc ∼ DP(η,β). (2)

The class cj of the j-th segment is determined by the class
of the (j − 1)-th segment and transition probability πc. The
segment of latent variables Zj is generated by a Gaussian
process whose parameter is ϕc, as follows:

cj ∼ p(c|cj−1,πc, α), (3)

Zj ∼ GP(Z|ϕcj ), (4)

where ϕc denotes a set of segments of latent variables that
are classified into class c. The segment Xj is generated from
the segment of the latent variables Zj by using decoder Pdec

of the VAE:

Xj ∼ pdec(X|Zj). (5)

The observed sequence s = X0,X1, · · · ,XJ is assumed
to be generated by connecting segments Xj sampled by
the above generative process. Similarly, the sequence of
the latent variables s̄ = Z0,Z1, · · · ,ZJ is obtained by
connecting the segments of the latent variables Zj . In this
paper, the i-th data point included in Xj is described as xji,
and the i-th data point included in Zj is described as zji.
If the characters represent what they obviously are, we omit
their subscripts.

A. Hierarchical Dirichlet Processes (HDP)

In this study, the number of segment classes is estimated
by utilizing a non-parametric Bayesian model. In a non-
parametric Bayesian model, an infinite number of classes
is assumed, and the classes are sampled from an infinite-
dimensional multinomial distribution. To realize this, an
infinite-dimensional multinomial distribution must be con-
structed, and one of the methods for this is the SBP [3].

vk ∼ Beta(1, γ) (k = 1, · · · ,∞), (6)

βk = vk

k−1∏
i=1

(1− vi) (k = 1, · · · ,∞). (7)

This process is represented as β ∼ GEM(γ), where “GEM”
denotes the co-authors Griffiths, Engen, and McCloskey [21].
In the case of models like the HMM, all states have to

share their destination states and have different probabilities
of transitioning to each state. To construct such a distribution,
the distribution β generated by the SBP is shared with all
states as a base measure, and transition probabilities πc,
which are different in each state c, are generated by another
Dirichlet process. The method in which the probability
distribution is constructed by a two-phase Dirichlet process
is called an HDP.

πc ∼ DP(η,β). (8)



B. Gaussian Process (GP)

In this paper, each class represents a continuous trajectory
by learning the emission zi of time step i using a Gaussian
process. In the Gaussian process, given the pairs (i,ϕc) of
time step i and its emission, which are classified into class c,
the predictive distribution of znew of time step inew becomes
a Gaussian distribution whose parameters are µ and σ2:

p(znew|inew,ϕc, i) ∝ N (z|µ, σ2), (9)

µ = kTC−1i, (10)

σ2 = c− kTC−1k. (11)

Here, k(·, ·) denotes the kernel function, and C is a matrix
whose elements are

C(ip, iq) = k(ip, iq) + ω−1δpq, (12)

where ω denotes a hyperparameter that represents noise
in the observations. k is a vector whose elements are
k(ip, i

new), and c is k(inew, inew). A Gaussian process can
represent complicated time-series data owing to the kernel
function. In this paper, we used the following kernel function,
which is generally used for Gaussian processes:

k(ip, iq) = θ0 exp(−
1

2
θ1||ip − iq||2 + θ2 + θ3ipiq), (13)

where, θ∗ denotes the parameters of the kernel.
Additionally, if the observations are composed of multi-

dimensional vectors, we assume that each dimension is in-
dependently generated. Therefore, the predictive distribution
GP(z|ϕc) that the emission z = (z0, z1, · · · ) of time step i
is generated by a Gaussian process of class c is computed
as follows:

GP(z|ϕc) = p(z0|i,ϕc,0, i)

× p(z1|i,ϕc,1, i)

× p(z2|i,ϕc,2, i) · · · (14)

= N (z|µ0, σ
2
0)N (z|µ1, σ

2
1)N (z|µ2, σ

2
2) · · · .

(15)

By using this probability, the latent variables can be classified
into the classes. Moreover, because each dimension is inde-
pendently generated, the mean vector µc(i) and the variance-
covariance matrix Σc(i) of GP(zji|Zc) are represented as
follows:

µc(i) = (µ0, µ1, µ2, · · · ), (16)

Σc(i) =

 σ2
1 0 0
0 σ2

2 0

0 0
. . .

 , (17)

where (µ0, µ1, µ2, · · · ) and (σ2
0 , σ

2
1 , σ

2
2 , · · · ) respectively

represent the mean and the variance of each dimension.
HVGH is a model whereby VAE and GP influence each other
mutually by using µc(i) and Σc(i) as the prior distribution
of the VAE.

𝒙𝑗

E
n

co
d

er

𝝁𝑗

𝚺𝑗

𝒛𝑗

D
ec

o
d

er

𝒙′𝑗

Fig. 3. Variational autoencoder (VAE).

C. Overview of the Variational Autoencoder

In this paper, we compress a high-dimensional time-series
observation into low-dimensional latent variables using the
VAE [4]. The VAE is a neural network that can learn the
correspondence between a high-dimensional observation x
and the latent variable z. Fig. 3 shows an overview of
the VAE. A Gaussian distribution with a mean µenc(x)
and variance Σenc(x) that are estimated by using encoder
networks from input x is used as qenc(z):

qenc(z) = N (z|µenc(x),Σenc(x)). (18)

The latent variable z is stochastically determined by this
distribution, and x′ is generated through decoder networks
pdec:

z ∼ qenc(z), (19)

x′ ∼ pdec(x|z). (20)

The parameters of the encoder and decoder are determined
to maximize the likelihood by using the variational Bayesian
method. Generally, the prior distribution of the VAE is a
Gaussian distribution whose mean is the zero vector 0, and
the variance–covariance matrix is the identity matrix e. On
the other hand, HVGH uses a Gaussian distribution whose
parameters are µc(i) and Σc(i) of class c into which zji is
classified. As a result, latent space suitable for segmentation
can be constructed. By using this VAE, a sequence of the
observation s = X0,X1, · · · ,XJ is converted to a se-
quence of the latent variables s̄ = Z0,Z1, · · · ,ZJ through
the encoder.

III. PARAMETER INFERENCE

Fig. 4 shows an outline of parameter estimation for
HVGH. A sequence of observations s is converted to a
sequence of latent variables s̄ by the VAE. Then, by the
HDP-GP-HSMM, the sequence of latent variables s̄ is di-
vided into segments of latent variables Z0,Z1, · · · , and the
parameters µc(i) and Σc(i) of the predictive distribution of
z are computed. This predictive distribution is used as a prior
distribution of the VAE. Thus, the parameters of the VAE and
HDP-GP-HSMM are mutually optimized.

A. Parameter Inference of HDP-GP-HSMM

The parameters of HDP-GP-HSMM are estimated in the
same manner that we proposed in [1]. Here, we briefly
explain the parameter inference and see [1] for detail.



Observed sequence: 𝒔
Initial parameters: 𝝁𝒄(𝑖) = 𝟎, 𝚺+(𝑖) = 𝒆
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Fig. 4. Overview of parameter estimation for HVGH. The parameters are
learned by a mutual learning loop of the VAE and HDP-GP-HSMM.

In the HDP-GP-HSMM, segments and classes of latent
variables are determined by sampling. For efficient estima-
tion, we utilize a blocked Gibbs sampler [22], in which all
segments and their classes in one observed sequence are
sampled. The segments of latent variables and their classes
are sampled as follows:

(Zn,1, · · · ,Zn,Jn), (cn,1, · · · , cn,Jn) ∼
p((Z0,Z1, · · · ), (c0, c1, · · · )|s̄n).(21)

The parameters of the Gaussian process of each class ϕc

and transition probability p(c|c′) are updated by using the
sampled segments and their classes. However, it is difficult
to compute Eq. (21) because an infinite number of classes is
assumed. To overcome this problem, we use a slice sampler
to compute these probabilities by stochastically truncating
the number of classes.

Moreover, the probabilities of all possible patterns of
segments and classifications are required in Eq. (21), and
these cannot be computed naively, owing to the large com-
putational cost. To compute Eq. (21) efficiently, we utilize
forward filtering–backward sampling [23].

B. Parameter Inference of the VAE

The parameters of the encoder and decoder of VAE are
estimated to maximize the likelihood p(x). However, it is
difficult to maximize the likelihood directly. Instead, the
normal VAE maximizes the following variational lower limit:

L(xji, zji) =
∫
qenc(zji|xji) log pdec(xji|zji)dzji

−DKL(qenc(zji|xji)||p(zji|0, e)),
(22)

where
∫
qenc(zji|xji) log pdec(xji|zji)dz represents the re-

construction error. Moreover, p(zji|0, e) is a prior dis-
tribution of zji, which is a Gaussian distribution whose
mean is 0, and the variance–covariance matrix is e.
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Fig. 5. Influence of prior distribution. The blue region represents the
standard deviation. (a) The same prior distribution is used for any data
points in the normal VAE. (b) The distribution is varied depending on the
time step and the class of the data point in the VAE in HVGH.

DKL(qenc(zji|xji)||p(zji|0, e)) is the Kullback–Liebler di-
vergence, and this works as a regularization term. On the
other hand, in the HVGH, the mean µc(i) and the variance–
covariance matrix Σc(i) are used as the parameters of the
prior distribution. These are the parameters of the predictive
distribution of class c into which zji is classified, and they
are estimated by HDP-GP-HSMM:

L(xji, zji) =

∫
qenc(zji|xji) log pdec(xji|zji)dzji

−DKL(qenc(zji|xji)||p(zji|µc(i),Σc(i))).

(23)

Fig. 5 illustrates the difference in prior distribution between
Eq. (22) and Eq. (23). In the normal VAE using Eq. (22),
the prior distribution is N (0, e) against all data points,
as shown in Fig. 5(a). On the other hand, the parameters
of the prior distribution of HVGH are computed by the
Gaussian process, as shown in Fig. 5(b). Because the GP
restricts data points that have closer time steps to being more
similar values, zji becomes a similar value to zj,i−1 and
zj,i+1. Therefore, the latent space learned by the VAE can
reflect the characteristics of time-series data. Moreover, these
parameters have different values depending on the class of
the data point. Therefore, the latent space can also reflect the
characteristics of each class.

IV. EXPERIMENTS

To validate the proposed HVGH, we applied it to several
types of time-series data. For comparison, we used HDP-GP-
HSMM [1], HDP-HMM [15], HDP-HMM+NPYLM [16],
BP-HMM [17], and Autoplait [18] as baseline methods.

A. Datasets

To evaluate the validity of the proposed method, we used
the following four motion-capture datasets.

• Chicken dance: We used a sequence of motion capture
data of a human performing a chicken dance from the
CMU Graphics Lab Motion Capture Database1. The
dance includes four motions, as shown in Fig. 6.

1http://mocap.cs.cmu.edu/: subject 18, trial 15
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Fig. 6. Four unit motions included in the chicken dance: (a) beaks, (b)
wings, (c) tail feathers, and (d) claps.
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(e)
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Fig. 7. Seven unit motions included in the “I’m a little teapot” dance: (a)
short and stout, (b) bending knee, (c) spread arms, (d) handle, (e) spout, (f)
steam up, and (g) pour.

• “I’m a little teapot” dance (teapot dance): We
also used two sequences from the teapot dance motion-
capture data from subject 29 in the CMU Graphics Lab
Motion Capture Database2. These sequences include
seven motions, as shown in Fig. 7.

• Exercise motion 1: To determine the validity against
more complicated motions, we used three sequences
of exercise motion-capture data from subject 13 in the
CMU Graphics Lab Motion Capture Database. These
sequences include seven motions, as shown in Fig. 8.

• Exercise motion 2: Further, we used three sequences
of different exercises from the motion-capture data
from subject 14 in the CMU Graphics Lab Motion
Capture Database. These sequences include 11 motions,
as shown in Fig. 9.

To reduce computational cost, all the sequences were pre-
processed by down sampling to 4 fps. These motion-capture
datasets included the directions of 31 body parts, each of
which was represented by a three-dimensional Euler angle.
Therefore, each frame was constructed in 93-dimensional
vectors. We used sequences of 93-dimensional vectors as
input. Moreover, HVGH requires hyperparameters, and we
set them to λ = 14.0, θ0 = 1.0, θ1 = 1.0, θ2 = 0.0, θ3 =
16.0, which were determined empirically for segmentation
of the 4-fps sequences. For the chicken dance exclusively,
we set λ to half that of the others, because its motion-
capture data was shorter than the others. To train the VAE,
we used 1/4 of all the data points as a mini batch, Adam
[24] was used for optimization, and optimization was iterated
150 times. To train HDP-GP-HSMM, the blocked Gibbs
sampler was iterated 10 times to converge the parameters.
Furthermore, the mutual learning loop of the VAE and HDP-
GP-HSMM was iterated until the variational lower limit

2http://mocap.cs.cmu.edu/: subject 29, trials 3 and 8
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Fig. 8. Seven unit motions included in exercise motion 1: (a) jumping
jack, (b) twist, (c) arm circle, (d) bend over, (e) knee raise, (f) squatting,
and (g) jogging

(a) (c) (d) (e) (f)

(g) (h) (i) (j)

(b)

(k)

Fig. 9. Eleven unit motions included in exercise motion 2: (a) jumping
jack, (b) jogging, (c) squatting, (d) knee raise, (e) arm circle, (f) twist, (g)
side reach, (h) boxing, (i) arm wave, (j) side bend, and (k) toe touch.

converged.

B. Segmentation of Motion-capture Data

To evaluate the segmentation accuracy, we used four mea-
sures: the normalized Hamming distance, precision, recall,
and F-measure as with [1]. An estimated boundary point is
treated as correct if the estimated boundary is within ±5%
of the sequence length.

First, we applied baseline methods to the 93-dimensional
time-series data. However, the baseline methods were not
able to segment the 93-dimensional time-series data ap-
propriately because of high dimensionality. Therefore, we
applied the VAE with the same parameters as HVGH, and
sequences of three-dimensional latent variables were used
for segmentation of the baseline methods. Tables I, II, III,
and IV show the results of segmentation on each of the four
motion-capture datasets.

VAE+HDP-GP-HSMM and VAE+BP-HMM were able to
segment the motion-capture data from the chicken dance
and teapot dance. However, in the results with exercise
motion by VAE+BP-HMM, the value of the normalized
Hamming distance was larger and the F-measure was smaller
than those of the dance motions. This is because simple
and discriminative motions were repeated in the chicken
dance and the teapot dance. Therefore, BP-HMM, which
is an HMM-based model, was able to segment them. By
contrast, the Gaussian process used in HVGH and HDP-GP-
HSMM is non-parametric, making it possible to represent
complicated motion patterns in the exercise data. Moreover,
HVGH achieved more accurate segmentation than HDP-GP-
HSMM. We believe that this is because the appropriate latent
space for the segmentation was constructed by using the
predictive distribution of the GP as the prior distribution of
the VAE in HVGH.



TABLE I

SEGMENTATION RESULTS FOR THE CHICKEN DANCE.

Hamming # of estimated
distance Precision Recall F-measure classes

HVGH 0.23 0.86 0.86 0.86 4
VAE+HDP-GP-HSMM 0.31 1.0 0.71 0.83 4

VAE+HDP-HMM 0.74 0.15 1.0 0.26 11
VAE+

HDP-HMM+NPYLM 0.48 1.0 0.86 0.92 7
VAE+BP-HMM 0.34 1.0 0.86 0.92 3
VAE+Autoplait 0.66 0.0 0.0 0.0 1

TABLE II

SEGMENTATION RESULTS FOR THE TEA POTS DANCE.

Hamming # of estimated
distance Precision Recall F-measure classes

HVGH 0.28 0.71 0.83 0.77 7
VAE+HDP-GP-HSMM 0.26 1.0 0.64 0.78 6

VAE+HDP-HMM 0.73 0.01 1.0 0.17 17
VAE+

HDP-HMM+NPYLM 0.41 0.72 0.93 0.81 9
VAE+BP-HMM 0.28 0.50 0.86 0.63 10
VAE+Autoplait 0.75 0.0 0.0 0.0 1

TABLE III

SEGMENTATION RESULTS FOR THE EXERCISE MOTION: SUBJECT 13.

Hamming # of estimated
distance Precision Recall F-measure classes

HVGH 0.16 0.66 0.93 0.75 11
VAE+HDP-GP-HSMM 0.24 0.53 0.93 0.67 12

VAE+HDP-HMM 0.75 0.05 1.0 0.09 10
VAE+

HDP-HMM+NPYLM 0.61 0.30 1.0 0.45 28
VAE+BP-HMM 0.58 0.29 0.97 0.44 7
VAE+Autoplait 0.76 0.0 0.0 0.0 2

TABLE IV

SEGMENTATION RESULTS FOR THE EXERCISE MOTION: SUBJECT 14.

Hamming # of estimated
distance Precision Recall F-measure classes

HVGH 0.20 0.50 1.0 0.66 13
VAE+HDP-GP-HSMM 0.29 0.45 1.0 0.62 12

VAE+HDP-HMM 0.78 0.04 1.0 0.07 24
VAE+

HDP-HMM+NPYLM 0.69 0.22 1.0 0.36 26
VAE+BP-HMM 0.79 0.48 0.81 0.55 5
VAE+Autoplait 0.79 0.0 0.0 0.0 3

Furthermore, the number of motion classes in the chicken
dance and teapot dance was correctly estimated by HVGH.
In the exercise motion, the larger numbers were estimated
because their sequences included complicated motions. In
the case of exercise motion 1, 11 classes were estimated
by HVGH—more than the correct number seven. This is
because that the stationary state was estimated as a unit of
motion, and symmetrical motion was separately classified
as left-sided and right-sided motion in different classes.
Moreover, 13 classes—more than the correct number 11—
were estimated by HVGH in exercise motion 2. Again, this
is because stationary motion was estimated as one motion,
and because the symmetrical motion shown in Fig. 9(j)
was divided into two classes: left- and right-sided motion.
However, it is reasonable to estimate the stationary state as
a unit of motion. Further, dividing a symmetrical motion into
two classes was not erroneous, because the observed values
for the left- and right-sided motion were different. Therefore,
we conclude that HVGH yielded better results in this case.

With regard to exercise motion 1, Fig. 10 shows the latent
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Fig. 10. Latent space of the VAE.
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Fig. 11. Latent space of the HVGH.

variables estimated by the VAE, and Fig. 11 shows the latent
variables learned by mutual learning with HVGH. In these
figures, (a), (b), and (c) respectively represent the first and
second, first and third, and second and third dimension of the
latent variables. The color of each point reflects the correct
motion class. In Fig. 10, latent variables do not necessarily
reflect the motion class because they were estimated with the
VAE exclusively. By contrast, in Fig. 11, the latent variables
in the same class have more similar values. This means that
a latent space is estimated representing the features of unit
motions.

From these results, we conclude that HVGH can estimate
the correct number of classes and accurate segments from
high-dimensional data by using the proposed mutual learning
loop.

V. CONCLUSION

In this paper, we proposed HVGH, which segments
high-dimensional time-series data by mutual learning of a
VAE and HDP-GP-HSMM. In the proposed method, high-
dimensional vectors are converted to low-dimensional latent
variables representing features of unit motions with the
VAE. Using these latent variables, HVGH achieves accu-
rate segmentation. The experimental results showed that the
segments, their classes, and the number of classes could be
estimated correctly using the proposed method. Moreover,
the results showed that HVGH is effective with various types
of high-dimensional time-series data compared to a model
where the VAE and HDP-GP-HSMM are used independently.

However, the computational cost of HVGH is very high,
because it takes O(N3) to learn N data points using a
Gaussian process, and this is repeated in the mutual learning
loop. Because of this problem, HVGH cannot be applied to
large-scale time-series data. We plan to reduce the computa-
tional cost by introducing the approximation method for the
Gaussian process proposed in [25], [26].



Moreover, in order to simplify the computation, we as-
sumed that the dimensions of the observation were indepen-
dent, and we consider this assumption reasonable because
the experimental results showed that the proposed method
works well. However, the dimensions of the observation
are not actually independent, and the dependency between
the dimensions will need to be considered in order to
model more complicated whole-body motion. We believe
that multi-output Gaussian processes can be used to represent
dependencies between dimensions [27], [28].

ACKNOWLEDGMENTS

This work was supported by JST CREST Grant Num-
ber JPMJCR15E3 and JSPS KAKENHI Grant Number
JP18H03295.

REFERENCES

[1] M. Nagano, T. Nakamura, T. Nagai, D. Mochihashi, I.
Kobayashi, and M. Kaneko, “Sequence Pattern Extraction
by Segmenting Time Series Data Using GP-HSMM with
Hierarchical Dirichlet Process,” International Conference on
Intelligent Robots and Systems, pp. 4067–4074, 2018.

[2] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei,
“Hierarchical Dirichlet processes,” Journal of the American
Statistical Association, vol. 101, no. 476, pp. 1566–1581, 2006.

[3] J. V. Gael, Y. Saatci, Y. W. Teh, and Z. Ghahremani, “Beam
Sampling for the Infinite Hidden Markov Model,” International
Conference on Machine Learning, pp. 1088–1095, 2008.

[4] D. P. Kingma and M, Welling, “Auto-Encoding Variational
Bayes,” arXiv preprint arXiv:1312.6114, 2014.
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