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Abstract— Humans recognize perceived continuous informa-
tion by dividing it into significant segments such as words and
unit motions. We believe that such unsupervised segmentation
is also an important ability that robots need to learn topics such
as language and motions. Hence, in this paper, we propose a
method for dividing continuous time-series data into segments
in an unsupervised manner. To this end, we proposed a method
based on a hidden semi-Markov model with Gaussian process
(GP-HSMM). If Gaussian processes, which are nonparamet-
ric models, are used, unit motion patterns can be extracted
from complicated continuous motion. However, this approach
requires the number of classes of segments in the time-series
data in advance. To overcome this problem, in this paper,
we extend GP-HSMM to a nonparametric Bayesian model by
introducing a hierarchical Dirichlet process (HDP) and propose
the hierarchical Dirichlet processes-Gaussian process-hidden
semi-Markov model (HDP-GP-HSMM). In the nonparametric
Bayesian model, an infinite number of classes is assumed and
it becomes difficult to estimate the parameters naively. Instead,
the parameters of the proposed HDP-GP-HSMM are estimated
by applying slice sampling. In the experiments, we use various
synthetic and motion-capture data to show that our proposed
model can estimate a more correct number of classes and
achieve more accurate segmentation than baseline methods.

I. INTRODUCTION

Humans perceive continuous information by dividing it
into significant segments. For example, we can recognize
words by segmenting a speech wave and perceive unit mo-
tions by segmenting continuous motion. Humans can learn
words and unit motions by appropriately segmenting the
continuous information without explicit segmentation points,
even though there are an infinite number of possibilities for
the segmentation points. We consider that such an ability is
also important for robots so that they can learn motions and
language flexibly.

To this end, we previously proposed a Gaussian process-
based hidden semi-Markov model (GP-HSMM). This model
is a hidden semi-Markov model (HSMM) with a Gaussian
process emission distribution, which makes it possible to
segment the time-series data in an unsupervised manner [1].
Fig. 1 depicts the generative process of the GP-HSMM.
Each state of the HSMM represents a class of a segment,
and the segments are generated from the Gaussian process
corresponding to their class. Similar motion patterns are
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Fig. 1. Overview of the generative process of the proposed method.

generated from the same Gaussian process, and the observed
continuous sequence is generated by combining them. By the
estimating the parameters of the GP-HSMM, the time-series
data can be segmented.

However, a GP-HSMM requires the number of classes
into which the continuous sequence is divided. This is a big
drawback because the number of classes is usually not known
in advance. In this paper, to overcome this problem, we ex-
tend GP-HSMM to the nonparametric Bayesian model HDP-
GP-HSMM by introducing a hierarchical Dirichlet process
(HDP) [2], which makes it possible to estimate the number
of classes. The nonparametric Bayesian model assumes an
infinite number of classes; however, a finite number of these
classes are actually used for representing the training data.
As a result, the number of classes can be estimated. By esti-
mating the parameters of the HDP-GP-HSMM, the segments,
their class, and the number of classes can be estimated at the
same time. However, forward filtering–backward sampling,
which is the parameter estimation method of GP-HSMM,
cannot be naively applied to HDP-GP-HSMM because this
model assumes an infinite number of classes. To apply it to
HDP-GP-HSMM parameter estimation, we utilize the slice
sampler proposed in [3] to limit the potential number of
classes. We evaluate the efficiency of the proposed HDP-
GP-HSMM using synthetic data and real motion-capture
data. The experimental results show that HDP-GP-HSMM
achieves a higher accuracy than some baseline methods.

Many studies for unsupervised motion segmentation have
been conducted. However, heuristic assumptions are used
in many of them [4], [5], [6]. Wächter et al. proposed a
method for the segmentation of object manipulation motions
by robots and used contact between the end-effector and the
object as a segmentation clue. The method proposed by Li-
outikov et al. requires candidates for the segmentation points
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Fig. 2. Illustration of representation of trajectory: (a) Observed data points,
(b) representation by HMM and (c) representation by GP-HSMM.

in advance. In addition, the method proposed by Takano et
al. utilizes the errors between the predicted and actual values
as criteria for segmentation. Moreover, some methods use
motion features such as the zero velocity of joint angles [7],
[8], [9]. However, it is not clear that these heuristics are valid
for all motions. In contrast, we do not use such heuristics and
formulate the problem of the segmentation using a stochastic
model. In some studies, the segmentation is formulated
stochastically, and hidden Markov models (HMMs) are used
[10], [11], [12], [13]. However, it is difficult for the HMMs
to represent complicated motion patterns, and we instead
use Gaussian processes, which are a type of non-parametric
model that can represent more complicated time-series data
than HMMs.

Regarding to the HMMs, HMM using HDP is also pro-
posed [10], [14]. Beal et al. proposed HDP-HMM that has
infinite number of states [10]. Moreover, Fox et al. extended
it to sticky HDP-HMM [14], which can prevent over-segment
by increasing self-transition probability. Fig. 2(b) depicts
the representation of trajectory of data points (Fig. 2(a))
by HMM. HMM represents trajectory using five Gaussian
distributions and the number of Gaussian distributions can be
estimated by using HDP. However, one can see that details
of the trajectory are lost. On the other hand, in GP-HSMM,
trajectory can be represented continuously by using two GPs
and, moreover, HDP makes it possible to estimate the number
of GPs. Thus, we consider HDP-GP-HSMM can represents
complex trajectories more accurately.

II. NONPARAMETRIC BAYESIAN MODEL

In this study, the number of motion classes are estimated
by utilizing a non-parametric Bayesian model. In the para-
metric Bayesian model case, the number of classes is finite,
the parameters of a multinomial distribution are determined
by a finite-dimensional Dirichlet distribution, and, finally,
the classes are sampled from this multinomial distribution.
In contrast, in the non-parametric Bayesian model case, an
infinite number of classes are assumed, and the classes are
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Fig. 4. Hierarchical Dirichlet Process (HDP).

sampled from the infinite-dimensional multinomial distri-
bution. Only a finite number of classes are actually used,
and, therefore, their number can be estimated. In the non-
parametric Bayesian model, an infinite-dimensional multino-
mial distribution must be constructed, and one of the methods
for it is the stick breaking process (SBP).

A. Stick Breaking Process (SBP)

The SBP [3] is a Dirichlet process that can construct an
infinite-dimensional multinomial distribution. In the SBP, the
parameters of infinite-dimensional multinomial distribution
β are constructed by repeatedly breaking a stick, the length
of which is one, with ratio vk sampled from a beta distribu-
tion, as follows (Fig. 3):

vk ∼ Beta(1, γ) (k = 1, · · · ,∞), (1)

βk = vk

k−1∏
i=1

(1− vi) (k = 1, · · · ,∞). (2)

This process is represented as β ∼ GEM(γ), where GEM
stands for Griffiths, Engen and McCloskey [15].

B. Hierarchical Dirichlet Process (HDP)

Using a Dirichlet process, HMMs with countably many
states can be constructed. However, if the SBP is naively
used, the destinations reachable from each state have differ-
ent states. In the case of models like HMMs, all state have to
share the destination states and have different probabilities of
transitioning to each state. To construct such a distribution,
the distribution β that was generated by the SBP is shared
with all states as a base measure, and transition probabilities
πc, which are different in each state c, are generated by
another Dirichlet process.

πc ∼ DP(η,β). (3)
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Fig. 5. Graphical model of HDP-GP-HSMM.

The method in which the probability distribution is con-
structed by a two-phase Dirichlet process is called an HDP
(Fig. 4).

III. HDP-GP-HSMM

Fig. 5 shows a graphical model of the proposed method,
which is a generative model of the time-series data. Here,
cj(j = 1, 2, · · · ,∞) denotes the classes of the segments,
and we assumed that the number of classes is countably
infinite. Probability πc denotes the transition probability,
which is generated from the β generated by the GEM
distribution (SBP) parameterized by γ and the Dirichlet
process parameterized by η.

β ∼ GEM(γ), (4)
πc ∼ DP(η,β). (5)

Class cj of the j-th segment is determined by the class of
the (j − 1)-th segment and transition probability πc. The
segment is generated by a Gaussian process with parameter
Xc as

cj ∼ P (c|cj−1,πc, α), (6)
xj ∼ GP(x|Xcj ), (7)

where Xc denotes a set of segments that are classified into
class c. Observed time series data is assumed to be generated
by connecting segments sampled by the above generative
process.

A. Gaussian process

In this paper, each class represents a continuous trajectory
found by learning the emission xi of time step i using a
Gaussian process. In the Gaussian process, given the pairs
(i,Xc) of time step i and its emission, which are classified
into class c, the predictive distribution of xnew of time step
inew becomes the Gaussian distribution

p(xnew|inew,Xc, i) ∝ N (kTC−1i, c− kTC−1k), (8)

where k(·, ·) denotes the kernel function and C is a matrix
whose elements are

C(ip, iq) = k(ip, iq) + ω−1δpq. (9)

Algorithm 1 Blocked Gibbs Sampler
1: Repeat until convergence
2: for n = 1 to N do
3: for j = 1 to Jn do
4: Ncnj− = 1
5: Ncnj ,cn,j+1− = 1
6: Delete segments xnj from Xcnj

7: end for
8:
9: // Sampling segments and their classes

10: xn∗, cn∗ ∼ P (x|sn)
11:
12: for j = 1 to Jn do
13: Ncnj ++
14: Ncnj ,cn,j+1 ++
15: Append segments xnj to Xcnj

16: end for
17: end for

Here, ω denotes a hyper parameter that represents noise in
the observation. Additionally, k is a vector whose elements
are k(ip, i

new), and c is k(inew, inew). A Gaussian process
can represent complicated time-series data owing to the
kernel function. In this paper, we used the following kernel
function, which is generally used for Gaussian processes:

k(ip, iq) = θ0 exp(−
1

2
θ1||ip − iq||2 + θ2 + θ3ipiq), (10)

where θ∗ denotes the parameters of the kernel.
Moreover, if the observations are composed of multidi-

mensional vectors, we assume that each dimension is inde-
pendently generated and, further, the predictive distribution
is such that the emission x = (x0, x1, · · ·) of time step
i is generated by a Gaussian process of class c, which is
computed as follows:

GP(x|Xc) = p(x0|i,Xc,0, I)

× p(x1|i,Xc,1, I)

× p(x2|i,Xc,2, I) · · · . (11)

Using this probability, the time-series data can be classified
into the classes.

B. Parameter Inference

1) Blocked Gibbs Sampler: The parameters of the pro-
posed model can be estimated by sampling segments and
their classes. For efficient estimation, we utilize a blocked
Gibbs sampler [16] in which all segments and their classes
in the observed sequence are sampled. First, all observed
sequences are randomly divided into segments and classified
into classes. Next, segments xnj(j = 1, 2, · · · , Jn) obtained
by segmenting sn are excluded from the training data, and
the parameters of Gaussian processes Xc and transition
probabilities P (c|c′) are updated. The segments and their
classes are sampled as follows:

(xn,1, · · · ,xn,Jn), (cn,1, · · · , cn,Jn) ∼ P (X, c|sn). (12)

Using the sampled segments and their classes, the param-
eters of Gaussian processes Xc and transition probabilities



u

c

𝜋𝑐′, 𝑐

Fig. 6. Slice sampling truncates the number of classes by thresholding
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Fig. 7. Forward filtering–backward sampling.

P (c|c′) are updated. Iterating this procedure, the parameters
can be optimized. Algorithm 1 shows the pseudo code of the
blocked Gibbs sampler. In this algorithm, Ncnj

, Ncnj ,cn,j+1

is a parameter to compute the transition probability in Eq.
(15). However, we must also compute the probability in Eq.
(12) for all possible patterns of segments and classes, which
is impractical because of the infinite number of classes.
To compute Eq. (12), we utilize forward filtering–backward
sampling and a slice sampler, which are explained in the next
section.

2) Slice Sampler: We assumed that the number of classes
is countably infinite. However, it is difficult to compute Eq.
(12) because c can be infinite possibilities. To overcome this
problem, we utilize slice sampler that limits the number of
classes stochastically proposed in [3]. In the slice sampler,
auxiliary variable uj for each time step j is introduced,
and by thresholding transition probability πc by using uj ,
the number of classes become finite. The parameter uj is
sampled from following probability:

p(uj |cj−1, cj) =
ξ(0 < uj < πcj−1,cj )

πcj−1,cj

, (13)

where ξ(A) = 1 if condition A is true; otherwise, it is 0.
Fig. 6 illustrates the slice sampler. By truncating the classes
with a transition probability πcj−1,cj that is less than uj , the
number of classes becomes finite.

3) Forward Filtering–Backward Sampling: The number
of classes can be truncated by slice sampling. As a result,
forward filtering–backward sampling [17] can be applied to
compute Eq. (12). Forward filtering-backward sampling can
be considered as MCMC version of the forward-backward
algorithm which is a maximum likelihood estimation. Al-
though the forward probabilities can be computed in the same
manner as forward-backward algorithm, the latent variables
are sampled backward based on forward probabilities in the
backward sampling. In the forward filtering, the probability

Algorithm 2 Forward Filtering–Backward Sampling
1: // Slice sampling
2: for j = 1 to Jn do
3: uj ∼ P (uj |cj−1, cj)
4: end for
5: C̄ = maxj(count(πcj−1,cj > uj))
6:
7: // Forward filtering
8: for t = 1 to T do
9: for k = 1 to K do

10: for c = 1 to C̄ do
11: Compute α[t][k][c]
12: end for
13: end for
14: end for
15:
16: // Backward sampling
17: t = T, j = 1
18: while t > 0 do
19: k, c ∼ p(xj |st−k:t)α[t][k][c]
20: xj = st−k:t

21: cj = c
22: t = t− k
23: j = j + 1
24: end while
25: return (xJn ,xJn−1, · · · ,x1), (cJn , cJn−1, · · · , c1)

that k samples st−k:k before time step t form a segment of
class c is as follows:

α[t][k][c] = GP(st−k:k|Xc)

×
K∑

k′=1


C̄∑

c′=1

p(c|c′)α[t− k][k′][c′]

 ,

(14)

where C̄ denotes the maximum number of classes estimated
by slice sampling and K denotes the maximum length of
segments. In addition, p(c|c′,β, α) is the transition proba-
bility, which can be computed as follows:

p(c|c′,β, α) = Nc′c + αβc′

Nc′ + α
, (15)

where Nc′ and Nc′c represent the number of segments
of class c and the number of transitions from c′ to c,
respectively. In addition, k′ and c′ are the length and class of
possible segments before st−k:k, and these probabilities are
marginalized out. Moreover, α[t][k][∗] = 0 if t− k < 0, and
α[0][0][∗] = 1.0. Equation (14) can be recursively computed
from α[1][1][∗] using dynamic programming, as shown in
Fig. 7(a). This figure depicts an example of computing
α[t][2][1], which is the probability that the two samples
before t become a segment whose class is c. In this case, the
length is two and, therefore, all the segments with end points
t−2 can potentially transit to this segment. In α[t][2][1], these
possibilities are marginalized out.

Finally the length of segments and their classes can be
sampled by backward sampling from t = T . Fig. 7(b) depicts
an example of backward sampling. The length of segment k1
and its class c1 are sampled from the probabilities α[t][∗][∗].
If k1 = 3, k2 and c2 are sampled from α[t − 3][∗][∗]. By
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Fig. 9. Synthetic time series 1: (a) five unit sequences and (b) connected
sequence.
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Fig. 10. Synthetic time series 2: (a) three unit sequences and (b) connected
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iterating this procedure until t = 0, the segments and their
classes can be determined.

Algorithm 2 shows the pseudo code of forward filtering–
backward sampling with slice sampling.

IV. EXPERIMENTS

To validate the proposed HDP–GP-HSMM, we applied it
to several types of time-series data. For comparison, we used
HDP-HMM [10], HDP-HMM+NPYLM [11], BP-HMM[12],
and Autoplait [13] as baseline methods.

A. Evaluation metrics

We used four measures to evaluate the accuracy of seg-
mentation: normalized Hamming distance, precision, recall,
and F-measure.

The normalized Hamming distance represents the error
rate of the classification of the data points and is computed
as follows:

ND(c, c) =
D(c, c)

|c|
, (16)

where c and c respectively represent sequences of estimated
classes and correct classes in the data points in the ob-
served sequence. Moreover, D(c, c) represents the Hamming
distance between two sequences, and |c| is the length of
the sequence. Therefore, the normalized Hamming distance
ranges from zero to one, and smaller values indicate that
the estimated classes are more similar to the ground truth.
To compute precision, recall, and F-measure, we evaluated
boundary points (boundaries between segments) as true pos-
itives (TPs), true negatives (TNs), false positives (FPs), and
false negatives (FNs), as shown in Fig. 8. TP is assigned to
the points that are correctly estimated as boundary points. An
estimated boundary point is treated as correct if the estimated
boundary was within ±5% of sequence length, as shown
in Fig. 8, Frame (2). TN is assigned to the points that are
correctly estimated as not boundary points, as shown in Fig.
8, Frame (3). Conversely, FP and FN are assigned to points
that are falsely estimated as boundary points, as shown in
Fig. 8, Frame (10), and falsely estimated as not boundary
points, as shown in Fig 8, Frame (6), respectively. From these
boundary evaluations, the precision, recall, and F-measure
are computed as follows:

P =
NTP

NTP +NFP
, (17)

R =
NTP

NTP +NFN
, (18)

F =
2P ·R
P +R

, (19)

where NTP , NFP , and NFN represents the number of
boundary points estimated as TP, FP, and FN respectively.

B. Segmentation of synthetic time-series data

First, we generated the following synthetic time-series data
(shown in Figs. 9 and 10), and applied the segmentation
methods to them.

• Synthetic time series 1: Unit sequences are a series
of constant values randomly selected from a set of five
values. The length of each unit sequence is randomly
generated from a uniform distribution.

k ∼ uniform(9, 13). (20)

Moreover, normal random values are added to each
sequence as follows:

x ∼ x+ normal(x, 0.05). (21)



TABLE I
SEGMENTATION RESULTS OF SYNTHETIC TIME SERIES 1.

Hamming # of estimated
distance Precision Recall F-measure classes

HDP-GP-HSMM 0.011 1.0 1.0 1.0 5
HDP-HMM 0.011 1.0 1.0 1.0 5

HDP-HMM+NPYLM 0.48 0.53 1.0 0.69 35
BP-HMM 0.36 1.0 0.94 0.97 4
Autoplait 0.79 0.00 0.00 0.00 3

TABLE II
SEGMENTATION RESULTS OF SYNTHETIC TIME SERIES 2.

Hamming # of estimated
distance Precision Recall F-measure classes

HDP-GP-HSMM 0.041 1.0 1.0 1.0 3
HDP-HMM 0.13 0.43 1.0 0.60 8

HDP-HMM+NPYLM 0.45 0.57 1.0 0.72 19
BP-HMM 0.038 1.0 1.0 1.0 3
Autoplait 0.35 0.17 0.15 0.16 2

The sequence shown in Fig. 9 is generated by connect-
ing these unit sequences.

• Synthetic time series 2: The sequence shown in Fig.
10(b) is generated by randomly connecting the three
sequences shown in Fig. 10(a).

Tables I and II show the segmentation results of synthetic
time series 1 and 2. The results in these tables show that the
Hamming distance of the proposed method is less than 0.1
and, moreover, all the precision, recall, and F-measure values
are 1.0. These results indicate that our proposed HDP-GP-
HSMM is able to estimate the segments almost completely
correctly. Furthermore, the number of classes were correctly
estimated as five in synthetic time series 1 and three in
synthetic time series 2.

HDP-HMM was also able to correctly segment synthetic
time series 1. This is because a simple model with a Gaussian
emission distribution is suitable for this time series. However,
HDP-HMM was not able to correctly segment synthetic time
series 2 which did not follow a Gaussian distribution. In
contrast, HDP-GP-HSMM and BP-HMM, which are more
complicated models, were able to deal with such data.

C. Segmentation of motion-capture data

To evaluate the validity of the proposed method using
more complicated real data, we applied it to the following
three motion capture data series.

• Chicken dance: We used a sequence of motion capture
data of a human performing a chicken dance from the
CMU Graphics Lab Motion Capture Database.1 The
dance includes four motions, as shown in Fig. 11. The
accelerations of both hands and feet, which were used
in the experiment in [13], were also used in these
experiments.

• Exercise motion: We also used three sequences of
exercise motion capture data from subject 14 in the
CMU Graphics Lab Motion Capture Database. This
motion includes 11 motions, as shown in Fig. 12. The
two-dimensional position (horizontal and vertical) of
both hands and feet were used.

1http://mocap.cs.cmu.edu/: subject 18, trial 15

(a) (b) (c) (d)

Fig. 11. Four unit motions included in the chicken dance: (a) beaks, (b)
wings, (c) tail feathers, and (d) claps.

(a) (c) (d) (e) (f)

(g) (h) (i) (j)

(b)

(k)

Fig. 12. Eleven unit motions included in the exercise motion: (a) jumping
jack, (b) jogging, (c) squatting, (d) knee raise, (e) arm circle, (f) twist, (g)
side reach, (h) boxing, (i) arm wave, (j) side bend, and (k) toe touch.

(c)(b)

(f)(e) (g)

(a) (d)

Fig. 13. Examples of motion included in the karate motion: (a) left lower
guard, (b) right punch, (c) right lower guard, (d) left punch, (e) left upper
guard, (f) right upper guard, and (g) preliminary motion.

• Karate motion: To include more complicated motions,
we used karate motion capture from mocapdata.com2.
Four sequences into which it is divided were used. Fig.
13 shows examples of the unit motions of the karate
data. As for the other data series, the two-dimensional
position of both hands were used.

All the data was preprocessed by down sampling and
normalization. In the case of HDP-GP-HSMM, all the data
was downsampled to reduce computational cost, and min-
max normalization, in which the values are normalized to a
range from -1 to 1, was applied. In the case of other methods,
the segmentation was affected by normalization and down
sampling for each data and, therefore, we choose a better
normalization from min-max and z-score, and a better sample
rate from fifteen fps, eight fps, four fps and two fps. The z-
score normalization makes means and standard deviation of
the normalized values zero and one respectively. The used
values for down sampling and normalized methods are shown
in Table III. HDP-GP-HSMM requires hyper parameters, and
we used λ = 12.0, θ0 = 1.0, θ1 = 1.0, θ2 = 0.0, θ3 = 16.0,
which were determined empirically for segmentation of 4
fps and min-max normalized data. Blocked Gibbs sampler
was repeated 10 times, which was the number of times to
converge the parameters.

2http://www.mocapdata.com/
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Fig. 14. Segmentation results for the karate motion.

TABLE III
VALUES USED FOR PREPROCESSING.

Chicken dance Exercise motion Karate motion
HDP-GP-HSMM 4 fps / min-max 4 fps / min-max 15 fps / min-max

HDP-HMM 8 fps / z-score 2 fps / z-score 2 fps / min-max
HDP-HMM+NPYLM 15 fps / z-score 2 fps / min-max 4 fps / min-max

BP-HMM 15 fps / z-score 15 fps / z-score 15 fps / z-score
Autoplait Original 15 fps / z-score 15 fps / z-score

TABLE IV
SEGMENTATION RESULTS FOR THE CHICKEN DANCE.

Hamming # of estimated
distance Precision Recall F-measure classes

HDP-GP-HSMM 0.13 1.0 0.86 0.92 4
HDP-HMM 0.46 0.39 0.71 0.50 4

HDP-HMM+NPYLM 0.65 0.63 0.71 0.67 8
BP-HMM 0.16 0.70 1.0 0.82 4
Autoplait 0.026 1.0 1.0 1.0 4

TABLE V
SEGMENTATION RESULTS FOR THE EXERCISE MOTION.

Hamming # of estimated
distance Precision Recall F-measure classes

HDP-GP-HSMM 0.31 0.38 0.95 0.55 10
HDP-HMM 0.82 0.070 1.0 0.13 14

HDP-HMM+NPYLM 0.63 0.61 1.0 0.76 26
BP-HMM 0.23 0.25 1.0 0.40 18
Autoplait 0.61 0.67 0.18 0.28 5

TABLE VI
SEGMENTATION RESULTS FOR THE KARATE MOTION.

Hamming # of estimated
distance Precision Recall F-measure classes

HDP-GP-HSMM 0.32 0.48 0.85 0.62 7
HDP-HMM 0.58 0.38 1.0 0.55 9

HDP-HMM+NPYLM 0.61 0.67 0.31 0.42 10
BP-HMM 0.39 0.34 0.75 0.47 7
Autoplait 0.60 0.00 0.00 0.00 3

Tables IV, V, and VI show the results of segmentation on
each of the three motion-capture time series. The results in
these tables show that HDP-GP-HSMM is able to accurately
segment all three sets of motion capture data. BP-HMM and
Autoplait are able to segment the chicken dance motion-
capture data; however, exercise and karate motions are not
segmented well by these methods. This is because simple and
discriminative motions were repeated in the chicken dance,
which makes this motion the simplest of the three motions
in this experiment. In contrast, the Gaussian process use in
HDP-GP-HSMM is a non-parametric method, which makes
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Fig. 15. Transition of the number of estimated classes.

it possible to represent the complicated motion patterns in
the exercise and karate motion-capture data.

Moreover, the number of chicken-dance and karate-motion
classes could be correctly estimated by HDP-GP-HSMM. In
the case of exercise motion, 10 classes were estimated by
HDP-GP-HSMM, which was less than the correct number
11 because similar unit motions, such as motion F and
motion H, as shown in Fig. 12, were classified as the same
motion class. However, the number of classes estimated by
HDP-GP-HSMM is still closer than those estimated by the
other methods. Therefore, we conclude that HDP-GP-HSMM
yielded better results in this case.

Fig. 14 illustrates the segmentation results for the karate
motion. Here, the horizontal axis represents time steps, color
reflects motion classes, and the top bar represents the ground
truth of segmentation. It is clear that the segments and their
classes estimated by HDP-GP-HSMM are similar to the
ground truth. Furthermore, Fig. 15 shows the transition of
the number of estimated classes by HDP-GP-HSMM. In this
graph, the horizontal axis represents the number of iterations
of the blocked Gibbs sampler, which fluctuates greatly in the
earlier phase. However, it eventually converges to the correct
value. Using HDP, the number of classes can be estimated
while the segments and their classes are being estimated.

V. CONCLUSION

In this paper, we proposed the HDP-GP-HSMM, which
makes it possible to segment time-series data and determine
the number of classes by introducing an HDP into an HSMM



whose emission distribution is a Gaussian process. In the
proposed method, a slice sampler truncates the number of
classes and makes it possible to apply forward filtering–
backward sampling. The experimental results showed that
the segments, their classes, and the number of classes can
be estimated correctly using the proposed method. Moreover,
the results also showed that the HDP-GP-HSMM is effective
on various types of time-series data including synthetic and
real sequences.

However, the computational cost HDP-GP-HSMM is very
high because it takes O(N3) to learn N data points using a
Gaussian process. Because of this problem, HDP-GP-HSMM
cannot be applied to large datasets. We are planning to reduce
the computational cost by introducing an approximation
method for the Gaussian process proposed in [18], [19].

Moreover, we used the assumption where dimensions of
the observation were independent to simplify the computa-
tion, and we consider this assumption is reasonable because
the experimental results showed the proposed method works
well. However, the dimensions of the observation are not
actually independent and we also consider the dependency
between the dimensions should be needed to model more
complicated whole body motions. We consider that multi-
output Gaussian processes can be used to represents depen-
dencies between dimensions[20], [21].
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