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Abstract 
This study proposes Researcher2Vec, which efficiently computes the neural document vectors of each paper using 
a simple linear algebra (SVD) to obtain a "researcher vector" based on the theory of Levy et al. (2014), who 
reported that the famous word2vec is equivalent to the matrix factorization. Researcher2Vec allows to objectively 
grasping and visualizing the expertise of each researcher in a low-dimensional space very efficiently. It also allows 
efficient search of researchers who are most associated with a given paper or a proposal as an analytical solution 
to ordinary least squares regression. Experimental results on academic paper datasets confirmed that our 
Researcher2Vec performs better than Doc2Vec and LDA in terms of both training speed and accuracy. 

Introduction 
The number of papers and researchers has been constantly increasing as science and technology 
is advancing, thus rendering increasingly difficulty to grasp their full picture. This issue is 
particularly severe for funding agencies that receive numerous research proposals each year: 
43,614 for NSF in the USA (2021), 100,084 for NSFC in China (2019) and 95,208 for JSPS in 
Japan (2021). Every proposal must be reviewed by expert researchers with subject matter 
expertise. However, finding such experts is challenging because even the most experienced 
funding manager has a limited scope over numerous candidates in various disciplines. Currently 
most funding agencies find relevant reviewers by areas and keywords; but this approach has a 
clear limitation because the agency does not examine the actual contents of the papers of each 
reviewer when they handling novel research proposals that typically do not have any existing 
authorities. 
This problem is already noticed by the computer science community, which is mainly operated 
primarily by large international conferences with strict review processes. In 2021, NeurIPS 
received 9,122 submissions in machine learning and CVPR received 7,500 in image processing, 
both of which require over 20,000 reviews for each conference in a short period of time because 
each paper requires multiple reviewers. These peer review assignments of papers are no longer 
possible without the automatic scoring of appropriate candidates by the Toronto Paper 
Matching System (TPMS) (Charlin and Zemel 2013) that internally uses a probabilistic topic 
model, namely latent Dirichlet allocation (LDA) (Blei et al. 2003). However, LDA is 
insufficiently flexible as described below, and training LDA with numerous topics is 
computationally quite expensive. Springer Nature Reviewer Finder is a similar system; 
however, it basically operates on keywords and abstracts as well as being proprietary and not 
open to the public. 
To solve this issue, this study proposes Researcher2Vec, which efficiently computes the neural 
document vectors of each paper through a simple linear algebra to obtain the “researcher vector” 
of each author. This allows representing the expertise of each researcher in a low dimensional 
embedding space very efficiently, and enables quickly searching the most relevant researchers 
for each proposal (or a paper) as an analytical solution to ordinary least squares (OLS) 
regression using word vectors as we show in this paper. Experimental results on the author 
prediction task indicate that Researcher2Vec is considerably superior to both Doc2Vec (Le and 
Mikolov 2014) and LDA in terms of computational speed and accuracy by a large margin.  



  
 
Figure 1: Visualization of embeddings of researchers, i.e. arXiv authors in the unarXive dataset (Saier 
and Färber 2020). The box in the right plot is zoomed into the left figure. Here, 100-dimensional 
“researcher vector” is mapped to 2D by t-SNE. 

Understanding Expertises of Researchers 
Finding appropriate experts for a given problem, i.e. a paper or a funding proposal in our case, 
has been pursued as an “expert recommendation” in artificial intelligence (see Nikzad-
Khasmakhi et al. (2019) for a recent review). It can be based on two approaches: (1) using meta-
information of a paper such as citations, areas and keywords, and (2) analyzing the actual 
contents of the paper. Approach (1) is generally susceptible to subjective noise on the areas or 
keywords that are assigned by humans, and the amount of available information is limited in 
practice. Furthermore, citation information is not available for a new paper or a funding 
proposal. 
By contrast, approach (2) directly models the scientific content of a paper, which enables more 
specialized recommendation of experts; in fact, TPMS follows this approach. Katsurai et al. 
(2016) performed LDA with 𝐾=500 topics on approximately 100,000 paper abstracts registered 
in Japan to show that LDA is superior to naive vector models, i.e. matching keywords, using 
probabilistic dimensionality reduction. We also trained a huge LDA of 𝐾=2000 topics on the 
full text of approximately 110,000 grant-in-aid proposals with 300 million words in total to help 
the funding agency to choose the appropriate reviewers for large grant proposals (JSPS, 2018). 
However, LDA is computationally intensive even if we employ the latest Gibbs sampler that 
has 𝑂(1) computation per word (Yuan et al. 2015). Furthermore, it has the following theoretical 
limitations: 
- It cannot deal with papers that have equally strong latent topics, because the latent topic 

distribution 𝜃 must sum to one; 
- It cannot represent flexible (possibly negative) correlations between latent topics because each 

element of 𝜃 must be always positive. 
In summary, LDA can estimate a “broad genre” of a paper, but cannot represent the fine-grained 
differences found in each research discipline. 

Document and Researcher Vectors by Neural Linear Model 
To handle this problem, in this study documents (papers) and their authors were embedded in 
a more flexible real vector space for representation. Unlike neural networks such as Doc2Vec 
(Le and Mikolov 2014), the proposed method is equivalent to a neural network but allows a fast 
and efficient computation and recommendation through a simple linear algebra. 
Levy et al. (2014) reported that the computation of word embeddings in word2vec (Mikolov et 
al. 2013) is equivalent to the matrix factorization with shifted pointwise mutual information 
(SPPMI) defined as follows. Let 𝑛(𝑤, 𝑐) be the number of times a word 𝑤 and a context word 
𝑐 co-occurring within a surrounding window (say, within 10 words before and after 𝑤). Let the 
frequency of 𝑤  and 𝑐  be 𝑛(𝑤)  and 𝑛(𝑐) , respectively, and 𝑁 = ∑ ∑ 𝑛(𝑤, 𝑐)!" . Then the 
following (shifted) Positive PMI (PPMI) 



PPMI(𝑤, 𝑐) = max4log	
𝑛(𝑤, 𝑐) ⋅ 𝑁
𝑛(𝑤)𝑛(𝑐) − log 𝑘 , 0= (1) 

can be arranged into a matrix 𝐘  that is decomposed as 𝐘 ≃ 𝐖𝐂#  by a singular value 
decomposition (SVD), as shown in Figure 2. 
Each row of 𝐖 can be shown to be mathematically equivalent to the word vector obtained by 
word2vec, specifically, skip-gram with negative sampling. Here, 𝐂 is an auxiliary matrix of 
context vectors, 𝐾 is the embedding dimensions, and 𝑘 corresponds to the number of negative 
examples; however, Levy et al. (2015) experimentally reported that 𝑘 = 1 , i.e. no shift, is 
optimal when using SVD. Therefore, we employed 𝑘 = 1 hereafter. 
 

 
 

Figure 2: Neural linear model of word vectors. Famous word2vec is equivalent to linear 
decomposition of PPMI matrix 𝒀 that can be easily obtained by co-occurrence statistics. 

 
Similarly, let 𝑛(𝑑, 𝑤) be the frequency of word 𝑤 in document 𝑑, and 𝑛(𝑑) be the number of 
words in 𝑑 . Then, as shown in Figure 3, the document-word matrix 𝐘  that consists of 
PPMI(𝑑, 𝑤) computed similarly as Equation (1) can be decomposed as 

𝐘 ≃ 𝐃𝐖# (2) 

to yield a “document vector” 𝑑  and a “word vector” 𝑤EE⃗  as each row of matrices 𝐃 and 𝐖, 
respectively. This document vector 𝑑 is essentially equivalent to Doc2Vec, which is trained by 
a neural network. However, here it can be obtained by a simple linear algebra that allows fast 
computation over a vast number of documents without iterative optimization and tuning 
hyperparameters. The experiments demonstrated that this document vector, which we call 
DocVec in this paper, is excessively faster to compute compared with Doc2Vec and has a higher 
performance as it is a mathematically optimal solution. Moreover, it has an analytical solution 
for retrieval, which we describe below. 
 

 
 

Figure 3: Neural linear model of document vectors and word vectors as an extension to 
word2vec. The optimal decomposition is obtained from the SVD of PPMI matrix 𝐘.  

Computing Researcher Vectors 
Once the document vector 𝑑 of each paper is obtained in this way, the embedding vectors of 
the researchers who wrote them can be computed. Let 𝛺$ denote the set of papers whose authors 



include researcher 𝑟 , then the researcher vector 𝑟  can be computed as the average of the 
document vectors of the papers in 𝛺$ as follows: 

𝑟 =
1
|𝛺$|

I 𝑑
%⃗∈(!

 (3) 

where 𝑑 is the associated row vector in 𝐃 and |𝛺$| the size of 𝛺$, namely the number of papers 
researcher 𝑟  has authored. This implies that each researcher in the embedding space is 
represented as a 𝐾-dimensional Gaussian distribution to calculate its mean.  
Figure 1 shows a part of an example of two-dimensional visualization by t-SNE of a 𝐾 = 100-
dimensional researcher vector 𝑟 computed from a corpus of 100,000 arXiv papers used in the 
experiments. As no meta-information, such as areas and keywords, are included, this is purely 
an embedding computed from the technical contents of the papers of each author. 

Finding Researchers by Words 
Once the embedding vectors of researchers are obtained in this way, researchers who are closely 
related to the given paper or proposal can be determined. Unlike conventional methods, the 
proposed method directly models the paper contents written by each author instead of areas or 
keywords; thus even highly specialized words can be used to search for researchers related to 
them. 
Let 𝑞 be a query, such as “reinforcement learning discourse” or an entire document. It can be 
regarded as a “document” 𝐲∗ as shown in the bottom of Figure 3 where the corresponding 
embedding vector 𝐝∗ exists. Given that the document vector and the researcher vectors exist in 
the same embedding space according to Equation (3), researchers can be searched by comparing 
the researcher vector 𝑟 with the document vector 𝑑∗ once we know 𝐝∗. 
Since each element of  𝐲∗ is a PPMI(𝑤, 𝑞) = max Mlog	 *+𝑤,𝑞-

*(")
, 0N, 𝐲∗ is a sparse vector whose 

element is 1 when 𝑤 appeared in 𝑞 and otherwise 0. We want to find the 𝐝∗ that approximates 
𝐲∗	in a least-squares sense: 

𝐲∗ ≃ 𝐝∗𝐖# (4) 
Equation (4) can be rewritten as 𝐲∗ ≃ 𝐖𝐝∗ when by replacing 𝐲∗ and 𝐝∗ with their transpose; 
this is a well-known ordinary least squares (OLS) regression (Boyd and Vandenberghe 2018) 
whose optimal solution is given by 

𝐝∗ = (𝐖#𝐖)01𝐖#𝐲∗	. (5) 
When precomputing a regression matrix 𝐑 = (𝐖#𝐖)01𝐖# in advance, 𝐝∗ is just given by 

𝐝∗ = 𝐑𝐲∗ (6) 
that is computed very efficiently. In Python, 𝐑 can be computed without using explicit matrix 
inversion as R=numpy.linalg.solve(numpy.dot(W.T,W),W.T). From Equation 
(6) and definition of 𝐲∗, 𝐝∗ is a sum of a few associated rows in 𝐑; therefore, when 𝐑 is memory 
mapped to disk using mmap(), memory consumption is also minimal in practice. 
Once 𝐝∗ is determined from query 𝑞, the search can be performed by displaying the researchers 
in the order of cosine distances between their researcher vectors 𝑟	and 𝐝∗. 

Experiments 
Materials and Methods 
To validate the proposed approach, experiments were conducted to predict the authors of a 
paper given its content. As a preliminary analysis, we used two kinds of corpora: (a) a corpus 
of natural language processing papers in Japan between 1995-2013, ranging over about twenty 
years, that contains 4,082 papers and 13,654,061 words in total. The size of the lexicon is 
𝑉=18,135 with frequency ≥ 10, and (b) collection of 100,000 arXiv papers uniformly sampled 



from the unarXive dataset (Saier and Färber 2020). This larger dataset contains 460,050,053 
words in total over multiple disciplines using 49,402 words of lexicon, and we uniformly 
dropped the first 100 words of each paper for anonymity. Given that several authors wrote only 
a few papers, we targeted (a) 499 authors out of 3,660 and (b) 13,989 authors out of 214,583, 
who wrote over five papers in this period for each dataset. 
The papers were randomly split into 90% for training and 10% for test documents. For each 
case of test papers that contain the target authors, the score of the relevance of each target author 
was computed to find where the true author appeared in the sorted list of these scores using 
mean average precision (MAP) (Manning et al. 2008). MAP is higher for better-performing 
systems, with MAP=1 implying that the all the highest score authors are the true authors of that 
paper, and 0.5 implying that the predicted author comes second to the true single author out of 
499 and 13,989 authors in our experiments. 
Baseline methods 
The reported Researcher2Vec model was compared with Doc2Vec and LDA-based 
recommendations. For Doc2Vec, a standard implementation in gensim was employed. For a 
fair comparison we used “distributed bag of words” model with hyperparameters epochs=100, 
hs=0, alpha=0.025, and sample=1e-5. Because Doc2Vec does not have an analytical solution 
for a new document, 𝐝∗  is computed iteratively by infer_vector() function of the 
package. For the case of LDA, we used our open Cython implementation using Gibbs sampling 
for a better performance. After 1,000 MCMC iterations over training documents, the optimal 
latent topic distribution 𝜃  for each test document was computed by the variational EM 
algorithm (Blei et al. 2003) to compare with average topic distribution 𝑟 of each author obtained 
similarly as Equation (3). Katsurai et al. (2016) computed a cosine distance between 𝜃 and 𝑟 
(“LDA cosine”); however, this is inappropriate because they are probability distributions in this 
case. Therefore, we also conducted experiments using a Kullback-Leibler divergence 

KL(𝜃||�⃗�) = Σ2314 𝜃2log	𝜃2/𝑟2 ∝ −Σ2314 𝜃2log	𝑟2 (7) 
as “LDA KLdiv”. 
Results 
Table 1 lists the MAP of the author prediction task accompanied by the training time for each 
model. The proposed Researcher2Vec was almost always superior to Doc2Vec and LDA in 
performance over different embedding dimension 𝐾, while training our model is extremely fast 
using SVD. The distribution of the MAP scores for the NLP papers is shown in Figure 4; for 
the proposed model, MAP was concentrated to 1.0 (i.e. perfect prediction) in most cases, 
whereas the other noisy cases include English (different language) papers and a student paper 
whose research interest differs from his supervisor as the last author. From the mathematical 
property of SVD, 𝐾 should be smaller than 𝐷 (=3582), and MAP of 𝐾=3000 was 71.6%. 
 
Table 1: Average performance (MAP) of author prediction. Researcher2Vec consistently achieved 
better prediction with very fast training time. Results of LDA on the arXiv dataset are omitted 
because it required too long training time (over >4 days) even with efficient 𝑶(𝟏) sampler (Yuan 
et al. 2015). Training time represents the case of K=1000. 
 

Model \ K 500 1000 2000 Time 
Researcher2Vec  61.3% 66.6% 70.2% 1m 
Doc2Vec 57.4% 60.5% 62.0% 21m 
LDA KLdiv 56.3% 56.2% 51.2% 14h48m 
LDA cosine 44.2% 48.0% 32.7% 14h48m 

 

500 1000 2000 Time 
43.3% 47.2% 50.3% 38m 
45.2% 46.8% 49.4% 5h32m 

 

(a) NLP papers (small dataset) (b) arXiv papers (large dataset) 



Conclusion 
In this study, a system that can visualize and search researchers by the contents of their papers 
was constructed and evaluated. This system computes document vectors equivalent to neural 
methods using efficient SVD, and allows efficient search of researchers as an analytical solution 
to ordinary least squares. Experimental results revealed that the proposed method is very 
efficient and exhibits higher author prediction performance compared with Doc2Vec and latent 
topic models. In the future, we aim to consider applying the proposed method on broader 
datasets like Scopus, which covers wider range of disciplines than used in this paper. 
 

  
(a) Researcher2Vec (b) LDA KLdiv 

Figure 4: MAP accuracies of the author prediction for NLP papers. In many cases, the proposed 
Researcher2Vec achieved perfect prediction (MAP=1) of the authors as compared to LDA. 
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