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Abstract. Visualization methods such as t-SNE [1] have helped in knowl-
edge discovery from high-dimensional data; however, their performance
may degrade when the intrinsic structure of observations is in low-dimensional
space, and they cannot estimate clusters that are often useful to under-
stand the internal structure of a dataset. A solution is to visualize the
latent coordinates and clusters estimated using a neural clustering model.
However, they require a long computational time since they have numer-
ous weights to train and must tune the layer width, the number of latent
dimensions and clusters to appropriately model the latent space. Addi-
tionally, the estimated coordinates may not be suitable for visualization
since such a model and visualization method are applied independently.
We utilize neural network Gaussian processes (NNGP) [2] equivalent to
a neural network whose weights are marginalized to eliminate the ne-
cessity to optimize weights and layer widths. Additionally, to determine
latent dimensions and the number of clusters without tuning, we pro-
pose a latent variable model that combines NNGP with automatic rele-
vance determination [3] to extract necessary dimensions of latent space
and infinite Gaussian mixture model [4] to infer the number of clusters.
We integrate this model and visualization method into nonparametric
Bayesian deep visualization (NPDV) that learns latent and visual co-
ordinates jointly to render latent coordinates optimal for visualization.
Experimental results on images and document datasets show that NPDV
shows superior accuracy to existing methods, and it requires less training
time than the neural clustering model because of its lower tuning cost.
Furthermore, NPDV can reveal plausible latent clusters without labels.

Keywords: Data visualization · Gaussian processes · Nonparametric
Bayesian models · Neural network

1 Introduction

Visualization methods such as t-SNE [1], which compress input to two- or three-
dimensional visual coordinates to be mapped on a scatter plot, provide a useful
overview of high-dimensional data, and a number of methods have been pro-
posed. These methods estimate visual coordinates based on the similarity of
data points and fall into two categories. The first category is local methods to
preserve neighbor structures in the original space [5–9]. These methods utilize
nearest neighbor graph that represents pairwise similarity to retain distances be-
tween neighbors. Among them, t-SNE [1] and UMAP [10] are the most popular
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Fig. 1: 3D Visualization of 100-dimensional data generated by transforming the
mammoth data in (a). Since NPDV(MF) estimates not only visual coordinates
but also latent clusters, the associated plot in (b) can be colored by the cluster
assignments, unlike existing methods in (c)–(e). See section 5 for details.

algorithms. The second is global methods to exploit relationships among three
points, and preserve distances between data points distant from one another [11–
13]. Particularly, Trimap [14] arguably shows comparable accuracy to t-SNE and
UMAP. There is a trade-off between preserving the local or global structures.
PaCMAP [15] exceptionally preserves both by combining the loss functions of
local and global methods. They have improved knowledge discovery in various
domains, such as bioinformatics [16] and audio processing [17].

However, they have several drawbacks to reveal hidden structures behind
datasets. First, their performance may degrade when the observations are dis-
tributed on a low-dimensional manifold embedded in the observation space. In
this case, the similarity between observations may differ from that in the man-
ifold, resulting in an inaccurate visualization. This problem worsens when the
manifold is embedded by a highly nonlinear function. Second, they cannot esti-
mate clusters. Visualization together with clusters provides an intuitive under-
standing of the internal structure of a dataset; however, most of these methods
only estimate visual coordinates. Supervised dimensionality-reduction [18–20]
utilize labels to address this drawback; however, these are not always available.
We present these problems through a simulation example. In this example, the
3D mammoth data shown in Fig.1 (a) is embedded into a 100-dimensional space
nonlinearly by a neural network; then, this data is visualized in 3D space using
several methods3. Exiting methods in Fig.1 (c)–(e) evidently fail to recover the
original mammoth shape. In addition, the lack of estimating clusters make it
difficult to interpret the internal structure of resulting plot.

A solution here is to visualize latent coordinates and clusters estimated us-
ing a neural clustering model [21–23]; however, this approach presents other
issues. As these models can accurately model a low-dimensional manifold by
leveraging a neural autoencoder and perform clustering simultaneously, this ap-
proach addresses the aforementioned issues. However, they often require a long
computational time to optimize model performance since they have numerous
neural weights to train and need to search their appropriate hyperparameter
settings, which is not suitable for scientific visualization. Particularly, the width
of hidden layers, the number of latent dimensions, and clusters that are criti-

3 Rotatable plots are provided as an html file in the supplemental material.
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Fig. 2: Visualization flow of NPDV. NPDV integrates the estimation of latent
coordinates X from observations Y using NN-iWMM and that of visual coordi-
nates V from X. Clustering is also performed by NN-iWMM.

cal hyperparameters to reveal the latent structure. Furthermore, the estimated
latent coordinates may not be suitable for visualization as such a model and
visualization method are independently applied.

We utilize neural network Gaussian processes (NNGP) [2], which are equiva-
lent to a neural network whose weights are marginalized, to address these issues.
The marginalization greatly reduces the computational time by eliminating the
necessity to optimize numerous weights and layer width while exploiting the
power of neural networks. Additionally, to determine the number of latent di-
mensions and clusters without tuning, we propose the neural network infinite
warped mixture model (NN-iWMM) by combining NNGP with automatic rele-
vance determination [3] to extract the necessary dimensions of latent space and
the infinite Gaussian mixture model [4] to infer the number of clusters. Finally,
NN-iWMM and visualization methods are integrated as shown in Fig. 2, into
nonparametric Bayesian deep visualization (NPDV) that jointly infers latent
and visual coordinates to render latent coordinates optimal for visualization.
Based on NPDV, we introduce NPDV(MF), which employs matrix factoriza-
tion to linearly reduce the dimensionality, and NPDV(t-SNE) based on t-SNE;
both methods enables to visualize the internal structure of dataset by utilizing
the estimated clusters. As shown in Fig.1 (b), we can observe from the sim-
ulation study that NPDV(MF) could accurately recover the mammoth shape.
NPDV(t-SNE) achieves better accuracy than existing methods and NPDV(MF)
for real-world data. Furthermore, NPDV(t-SNE) shows two preferable proper-
ties in unsupervised settings: (1) it takes considerably less training time than
the neural clustering model and (2) has the ability to reveal plausible clusters
without label information..

The remainder of this paper is organized as follows. We introduce the pre-
liminaries in Section 2, and the proposed models and their training algorithm in
Sections 3 and 4, respectively. Subsequently, we demonstrate their advantages
through simulation and real data experiments in Sections 5 and 6.

2 Infinite Warped Mixture Model

The proposed models are based on the infinite warped mixture model (iWMM)
[24], an extension of the Gaussian process latent variable model (GPLVM) [25]
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that uses Gaussian processes [26] for dimensionality reduction. We introduce the
notation and iWMM as preliminary. Let D, Q, and S denote the dimensionalities
of observations Y = {yi ∈ RD}Ni=1, latent coordinates X = {xi ∈ RQ}Ni=1, and
visual coordinates V = {vi ∈ RS}Ni=1, respectively. Q is smaller than D and
larger than S, and S is typically set to two or three. N represents the number
of observations. N (m,C) is a multivariate Gaussian distribution with a mean
m and covariance C. IN represents an N -dimensional identity matrix.

GPLVM independently draws a latent coordinate xi from N (0, IQ) and
draws the dth column of observations y·d={yid}Ni=1 from the distribution below:

p(y·d|X) = N (y·d|0,K + β−1IN ), (1)

where K is the Gram matrix, each component is given by the kernel function
k(x,x′) evaluated at two coordinates x and x′, and β > 0 is the precision.

Latent space sometimes has clusters; however, GPLVM fails to capture them
as it assumes a unimodal Gaussian distribution as prior to X. iWMM assumes
the infinite Gaussian mixture model (∞-GMM) [4] defined under Dirichlet pro-
cess theory [27] as prior to X to model latent clusters. Each coordinate xi is
drawn from the following distribution:

p(xi) =

∞∑
k=1

πkN (xi|mk,R
−1
k ), (2)

where πk, mk, and Rk represent the mixing weight, mean, and precision matrix
of the kth Gaussian distribution, respectively. For simplicity, Rk is assumed to
be a diagonal matrix in this study.

3 Proposed Methods

We utilize neural network Gaussian processes (NNGP) [2], which are equivalent
to a neural network whose weights and biases are marginalized, to eliminate
the necessity to optimize neural weights, biases and the width of hidden layer
while implicitly utilizing a neural network. Subsequently, we explain NNGP and
introduce a latent variable model that combines iWMM and NNGP. Finally, we
propose the NPDV.

3.1 Neural Network Gaussian Processes

In an L-layer fully connected neural network, let ϕ(·) and Nℓ denote the activa-
tion and width of the ℓth layer, respectively. It is assumed that the weights and
biases of the ℓth layer, W ℓ

ij and bℓi for i = 1, 2 · · · , Nℓ and j = 1, 2, · · · , Nℓ−1, are
independently drawn from N (0, σw/Nℓ) and N (0, σb/Nℓ), respectively. A pre-
activation of the ℓth layer, aℓi(xn) , is then computed as a linear combination of
the post-activations of the (ℓ− 1)th layer {ϕ(aℓ−1

i (xn))}
Nℓ−1

j=1 :

aℓi(xn) = bℓi +

Nℓ−1∑
j=1

W ℓ
ijϕ(a

ℓ−1
j (xn)) . (3)
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Fig. 3: ARD weights estimated by
NPDV on simulation data. The
three dimensions in red are selected
as the necessary dimensions.

tmp

Fig. 4: Generative process of NN-
iWMM. X is drawn from the ∞-GMM,
and Y is then drawn from Gaussian pro-
cesses with the ARD-NNGP kernel.

aℓi(xn) is distributed with a Gaussian distribution from the central limit theorem
whenNℓ → ∞ because the summation in (3) is the sum of i.i.d. random variables.
Because this result holds for any n, the output of the ℓth layer {aℓi(xn)}Nn=1 is
jointly distributed with the Gaussian process with the Gram matrix Kℓ. Each
component of Kℓ, kℓ(x,x′), is computed as follows:

kℓ(x,x′) = σ2
b + σ2

wEaℓ−1
i ∼GP(0,Kℓ−1)[ϕ(a

ℓ−1
i (x))ϕ(aℓ−1

i (x′))] . (4)

The NNGP kernel is computed by iterating the recursion (4) L times, where
Gaussian processes with this kernel are equivalent to an L-layer ∞-width neural
network whose weights and biases are marginalized. The first step of the original
NNGP kernel is the inner product of the input: k0(x,x′) = σ2

b + Q−1σ2
wx

Tx′.
In contrast, we introduce automatic relevance determination (ARD) [3] weights
γ = {γq}Qq=1 into k0(x,x′) to estimate the importance of each dimension:

k0(x,x′) = σ2
b +Q−1σ2

w

Q∑
q=1

γqxqx
′
q . (5)

An ARD weight γq increases if the qth dimension is highly related to the obser-
vations, and becomes zero if it is totally irrelevant. Fig. 3 shows the ARD weights
estimated by NPDV and the selected dimensions when conducting the simula-
tion study . In the simulation, 20 dimensional latent coordinates were estimated
from a 100-dimensional data whose intrinsic structure is in three-dimensional
space. We can observe from Fig. 3 that ARD correctly determines the dimen-
sionality of the intrinsic space. Hereafter, the NNGP kernel with ARD weights
is referred to as the ARD-NNGP kernel and is denoted as kL(xi,xj). The Gram
matrix computed using kL(x,x′) is denoted as KL.

KL is generally intractable due to the nonlinearity of X; however, it can be
analytically computed when the activation is an identity map or a nonlinear map
belonging to the polynomial rectified nonlinear function family [28], including
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ReLU. We use kernel functions compatible with an identity map or ReLU to
compute KL. Appendix A presents the concrete forms 4.

3.2 NN-iWMM

NN-iWMM is formulated by substituting the ARD-NNGP kernel into iWMM
and infers the latent coordinates, their cluster assignments and the number of
latent clusters. Fig. 4 shows its generative process consisting of generating latent
coordinates X from ∞-GMM and mapping X to the observation space using
Gaussian processes with the ARD-NNGP kernel.

In ∞-GMM, the mixing weights {πk}∞k=1 are drawn from the stick-breaking
process GEM(α) [29], which defines a distribution equivalent to the Dirichlet
process. Specifically, πk is computed as πk = ψk

∏k−1
j=1 (1 − ψj), where each ψj

is drawn from the beta distribution Beta(1, α). Subsequently, the mean mk and
diagonal components of the precision matrix {rkq}Qq=1 of the kth Gaussian dis-
tribution are drawn from N (0, I) and the gamma distribution Gam(1, 1), re-
spectively.

For i = 1, 2, · · · , N , the cluster assignment zi is drawn from the categorical
distribution Cat({πk}∞k=1) and xi is generated from the zith Gaussian distribu-
tion N (mzi ,Rzi). Then, the Gram matrix KL is computed from X using (4)
and (5). y·d is drawn from N (0,KL) for d = 1, 2, · · · , D.

Due to the absence of weights and biases, it is unnecessary for NN-iWMM
to optimize the weights and layer widths while leveraging a neural network.
Additionally, unlike neural clustering models, using ∞-GMM and ARD weights
allows to determine the number of latent dimensions and clusters, which are
critical to model the latent space appropriately, without tuning.

3.3 Nonparametric Bayesian Deep Visualization

NPDV jointly estimates X and the visual coordinates V by integrating the two
reduction steps, as shown in Fig. 2. We use weighted latent coordinates XγT as
the input to prioritize the necessary dimensions of X in terms of ARD weights
when estimating V . Denoting RDR(XγT,V ) and L(Y ,X) as the visualization
loss to estimate V and the loss of NN-iWMM to estimate X, respectively, we in-
troduce how to integrate these two losses into a Bayesian model using regularized
Bayesian inference (regBayes) [30].

The regBayes framework enables the design of Bayesian models while con-
sidering the appropriate constraints on its posterior. This framework is built
on a variational formulation of the Bayesian posterior p(θ|Y ) ∝ p(Y |θ)p(θ),
where Y and θ are the observations and parameters, respectively. p(θ|Y ) can
be viewed as a solution to the following variational optimization problem [31]:

min
q(θ)

KL[q(θ)∥p(θ)]−
∫
q(θ) log p(Y |θ)dθ

s.t. q(θ) ∈ P ,

(6)

4 All appendices are provided in the Supplemental Materials.
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where P is a set of probability distributions. In the regBayes framework, we
consider the following optimization problem with constraints regarding the ex-
pectation of the regularizer Eq(θ)[R(θ, Y )]:

min
q(θ)

KL[q(θ)∥p(θ)]−
∫
q(θ) log p(Y |θ)dθ

s.t. Eq(θ)[R(θ, Y )] ≤ 0, q(θ)∈ P .

(7)

The optimal solution of (7) is obtained by

q∗(θ) ∝ p(Y |θ)p(θ) exp(−λR(θ, Y )) , (8)

where λ is the Lagrange multiplier. From (8), the optimal posterior of θ that sat-
isfies the constraints is obtained by its right-hand term. For NPDV, p(Y |θ)p(θ)
corresponds to the likelihood of NN-iWMM L(Y ,X):

L(Y ,X) = p(Y |X)p(X|z)p(z|{mk, rk, ψk}∞k=1))p({mk, rk, ψk}∞k=1) . (9)

R(Y, θ) is given by RDR(XγT,V ). Therefore, the optimal posterior of the
NPDV is obtained by

q∗(X,V ) ∝ L(Y ,X)× exp(−λRDR(XγT,V ) . (10)

Hence, the joint optimization of L(Y ,X) and RDR(XγT,V ) is the posterior
inference of q∗(X,V ). NPDV makes the posterior of X suitable for visualization
because RDR(XγT,V ) in (10) serves as a regularizer to infer the posterior of
NN-iWMM. λ is a hyperparameter that balances L(Y ,X) and RDR(XγT,V ),
and NPDV degenerates to NN-iWMM when λ = 0. V is treated as a determin-
istic parameter, as are the NNGP parameters {σw.σb,γ}.

The any dimensionality-reduction method can be used for RDR. In this paper
we combine matrix factorization (MF) and t-SNE, which are widely used in
many different domains, with NPDV. We call these methods NPDV(MF) and
NPDV(t-SNE), respectively. Notably, λ = ND practically works well for both
methods.

NPDV(MF): MF approximates a matrix using a product of two low-rank
matrices, and is one of the widely used linear dimensionality-reduction methods.
For NPDV(MF), the weighted coordinates XγT are factorized as the rank S
matrix W and visual coordinates V : XγT ≈ WV T. Denoting ∥ · ∥2F as the
Frobenius norm, ∥A∥2F ≡

∑
i,j a

2
ij , A ∈ RI×J , and the associated visualization

loss RMF(XγT,V ) can be computed as

RMF(XγT,V ) = ∥XγT −WV T∥2F . (11)

NPDV(t-SNE): NPDV(MF) may fail to capture the nonlinear pattern as it
linearly reduces the dimensionality of XγT. We then introduce NPDV(t-SNE),
which uses the t-SNE loss for RDR(XγT,V ) as a nonlinear counterpart. For
NPDV(t-SNE), RDR(XγT,V ) is computed as the divergence of similarities in
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the latent and visual spaces. Denoting ⊙ as the element-wise Hadamard product,
the similarity of weighted latent coordinates, xi ⊙ γ and xj ⊙ γ, is computed
from the conditional probability based on the Gaussian kernel:

pXj|i =
exp(−∥γ ⊙ xi − γ ⊙ xj∥2/2τ2i )∑
ℓ ̸=i exp(−∥γ ⊙ xi − γ ⊙ xℓ∥2/2τ2i )

, pXij =
pXi|j + pXj|i

2N
, (12)

where τ2i is the variance of the Gaussian distribution and is computed from
the neighbors of γ ⊙ xi using a binary search with perplexity ρ, which is a
hyperparameter that controls the number of neighbors.

The similarity of two visual coordinates, vi and vj , is evaluated using Stu-
dent’s t-distribution kernel as follows:

pVij ≡
(1 + ∥vj − vi∥2)−1∑

k

∑
ℓ̸=k(1 + ∥vk − vℓ∥2)−1

. (13)

Rt-SNE(XγT,V ) is computed as the KL divergence between {pXij}i,j and {pVij}i,j :

Rt-SNE(XγT,V ) ≡
∑

i,j,i ̸=j

pXij log
pYij
pVij

. (14)

4 Bayesian Training

We employ variational inference to train the NPDV. NN-iWMM is a special case
of NPDV when λ = 0; hence, we focus on the training algorithm for NPDV. The
parameters of NPDV are estimated by maximizing the evidence lower bound
(ELBO) L of NPDV. L is derived from Jensen’s inequality and the variational
distribution Qthat is used to approximate the true posterior [32]:

L = EQ

[
log

L(Y ,X)× exp(−λRDR(XγT,V )

Q

]
. (15)

Following [33], the ∞-GMM is approximated by a finite Gaussian mixture model
whose maximum number of mixtures is K. Additionally, we impose the following
mean-field assumption on Q.

Q =
N∏
i=1

q(xi)q(zi)

K∏
k=1

q(ψk)q(mk)q(rk) , (16)

where q(xi) = N (µi,Si). The variational distributions for the mixture model
q(ψk), q(mk), q(rk), and q(zi) have the same form as in [33]. Using the mean-field
assumption on Q and conditional independence of NN-iWMM, L is decomposed
into the four terms:

L = Eq(X)[log p(Y |X)]− Eq(X)[log q(X)].

+ Eq(X,z,m,r,ϕ)

[
log

p(X, z, {mk, rk, πk}Kk=1)

q(z, {mk, rk, πk}Kk=1)

]
− λEq(X)[RDR(XγT,V )]

= L1 +
∑N

i=1 H(q(xi)) + L2 − λRDR(XγT,V ), .

(17)
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Algorithm 1 Variational inference algorithm for NPDV
Input observations Y and the number of layers L
1. Pre-training
Initialize Π0 = [{µi,Si}Ni=1, ζ, σ

2
b , σ

2
w,γ, β]

for i=1,2,... do
Update Π0 with a gradient-based method

end for
Initialize V
2. Training NPDV.
Initialize Π1 = {z, {mk, rk, πk}Kk=1}
for i=1,2,... do

Generate X̃ with (18)
Approximate L1, L2, and RDR with X̃
Update Π1 with the EM algorithm in Appendix B
Update Π2 = {µi,Si}Ni=1, ζ,V , σ2

b , σ
2
w,γ, β} with a gradient-based method

end for

Unlike Gaussian entropy H(q(xi)), L1, L2, and RDR(XγT,V ) cannot be eval-
uated analytically. Therefore, we adapt the reparameterization trick [34] to ap-
proximate these quantities. Using this trick, Monte Carlo samples of xi, x̃i, is
generated by affine-transforming the standard Gaussian noise ϵ with µi and Si:

x̃i = µi + Siϵi ; ϵi ∼ N (0, IQ) for i = 1, 2, · · · , N . (18)

Hereafter, we outline the evaluation of L1, L2, and RDR using X̃ = {x̃i}Ni=1.
The naive approximation of L1 requires O(N3) complexity because it in-

verts KL ∈ RN×N and is difficult to train over a large dataset. We exploit
the inducing-point approach [35] to reduce the complexity. Using this approach,
L1 given X̃ is approximated by O(M3), (M ≪ N) complexity based on M
pseudo-inputs ζ ∈ RM×Q in the latent space, and the corresponding Gaussian
process outputs ud ∈ RM . The cost of the variational mixture model L2, given
X̃, is of the same form as the ELBO for ∞-GMM in [33]. Moreover, the param-
eters of the variational mixture model can be updated using the expectation-
maximization (EM) algorithm. RDR(XγT,V ) is computed by substituting X̃
and ARD weights with γ. Appendix B provides the details of evaluating L1 and
L2 and the update formulae of the parameters of the variational mixtures.

Algorithm 1 summarizes the NPDV training algorithm. First, we pretrain
the NN-iWMM that assumes N (0, IQ) as the prior of X to initialize Π0 =
[{µi,Si}Ni=1, ζ, σ

2
w, σ

2
b ,γ, β]. Subsequently, we initialize V . After that, We gener-

ate Monte Carlo samples X̃ using (18) and approximate L1, L2, and RDR to train
the NPDV. Then, we update the parameters of the variational mixture model
Π1 = [z, {mk, rk, ψk}Kk=1] and the others Π2 = [{µi,Si}Ni=1, ζ,V , σ

2
b , σ

2
w,γ, β]

using the EM algorithm and a gradient-based method, respectively.
Less parametricity: Due to the absence of weights and biases, NPDV has

significantly less parameters than autoencoder variants. A symmetric neural au-
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Fig. 5: 3D Visualization of a 100-dimensional data that are generated by trans-
forming the mammoth data in (a) using a neural network. (b)–(d) are obtained
by proposed methods and colored by the estimated clusters. (e)–(j) are obtained
by existing methods,

toencoder has 2
∑L

ℓ=1(Nℓ +NℓNℓ−1) weights and biases, where Nℓ and N0 rep-
resent the width of ℓth hidden layer and dimensionality of the observations,
respectively. It is not uncommon for them to have more than 107 parameters as
Nℓ often exceeds thousands. Conversely, because NNGP has no need to estimate
weights and biases, NPDV has much less parameters than neural models.

Hyperparameter settings: NPDV has several hyperparameters; however,
not all of them are considered in practice. For the maximum latent dimensions
and cluster, Q and K, if they are set to sufficiently large values, the necessary
latent dimensions and number of clusters are estimated by the ARD mechanism
and ∞-GMM. For the perplexity of NPDV(t-SNE), ρ, the number of inducing
points M , learning rate η, and balance term λ, NPDV(t-SNE) achieves higher
accuracy than the existing methods with M=100, ρ=30, η=0.01, and λ=ND.
Therefore, we only focus on a single hyperparameter, the layer depth of the
NN-iWMM L.

5 Simulation Study

We present the qualitative properties of the NPDV through a simulation study.
As mentioned in Section 1, the visualization accuracy may degrade when observa-
tions are distributed on a lower dimensional manifold. To imitate such situation,
the 3D mammoth data in Fig. 5(a) is embedded into a 100-dimensional space by
a neural network. Then, we visualize this 100-dimensional data in 3D space using
several methods. Besides NN-iWMM, NPDV(MF) and NPDV(t-SNE), we apply
six existing methods to the data as baselines: Autoencoder5, t-SNE, UMAP [10],
Trimap [14], NCvis [9], and PaCMAP [15]. Appendix C provides the details of
the experimental settings.
5 The network architecture is the same as that of the data generation network
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Table 1: Summary of the datasets used in Section 6. C and D are the number of
labels and dimensionality of observations, respectively. For 20 news, 20 labels
are converted to 6 meta-labels according to the dataset guideline.

Dataset type C D

MNIST Images 10 784
Fashion-MNIST Images 10 784
20 news Documents 6 1,000

Table 2: Average k-nearest neighbors classification accuracy with five different
random seeds. The highest scores are in bold font.

MNIST Fashion-MNIST 20 news
Method k=10 k=20 k=30 k=10 k=20 k=30 k=10 k=20 k=30
t-SNE 0.930 0.920 0.915 0.819 0.794 0.783 0.726 0.700 0.690
UMAP 0.921 0.916 0.913 0.777 0.763 0.757 0.729 0.705 0.695
Trimap 0.902 0.897 0.891 0.774 0.760 0.757 0.740 0.720 0.713
NCVis 0.891 0.886 0.884 0.776 0.764 0.759 0.405 0.358 0.338
PaCMAP 0.902 0.896 0.894 0.778 0.766 0.759 0.741 0.724 0.717
VSB-DVM 0.931 0.920 0.915 0.837 0.819 0.806 0.778 0.757 0.749
NN-iWMM 0.893 0.884 0.881 0.765 0.748 0.741 0.725 0.706 0.698
NPDV(MF) 0.529 0.495 0.484 0.650 0.629 0.619 0.636 0.618 0.610
NPDV(t-SNE) 0.928 0.917 0.911 0.834 0.820 0.808 0.786 0.761 0.750

Fig. 5 shows the resulting plot of each method. In contrast to conventional
visualization methods in Fig. 5 (f)–(j), since NN-iWMM based methods infers
clusters in addition to latent coordinates, we colored the associated plots by
estimated clusters. Especially, Fig.5 (b) shows that NPDV(MF) recovers the
original mammoth shape more accurately than the existing methods in Fig.5
(e)—(j) and other NN-iWMM based methods in Fig.5 (c) and (d). This means
NPDV(MF) accurately recovered the intrinsic manifold embedded in a high-
dimensional space in this simulation. Furthermore, it enables to find the specific
parts of the mammoth body, such as paws and horns, as clusters by coloring
with the cluster assignments.

The plot of NPDV(t-SNE) in Fig.5 (c) is blurred because the t-SNE occasion-
ally fails to capture the global structure. However, as shown in the next section,
NPDV(t-SNE) achieves superior performance to NPDV(MF) on real-world data.

6 Experiments on Real-World Data

We demonstrate several advantages of NPDV(t-SNE) through real-world data
experiments on three datasets. MNIST contains hand-written digit images,
where each image is labeled one of 0–9. Fashion-MNIST contains images of
clothing, where each image is labeled with one of 10 categories, such as T-
shirts or shoes. 20 news corpus records English articles, where each article is
classified into one of 20 labels. Table 1 summarises these datasets. We randomly
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Fig. 6: Visualization of Fashion-MNIST. (a), (b) and (c) are colored by latent
clusters that can be discovered by each method.

Fig. 7: Visualization of 20 news. (a), (b) and (c) are colored by latent clusters
that can be discovered by each method.

extracted 5,000 samples from each dataset for evaluation. For MNIST and
Fashion-MNIST, all images are scaled within [0, 1]. For 20 news, the original
20 labels were converted into six meta-labels, e.g., rec and sci for recreation and
science, respectively, according to the dataset guideline 6, and documents were
transformed into 1,000-dimensional tf.idf vectors after removing stopwords and
performing lemmatization.

We used the k-nearest neighbor classification accuracy for k = [10, 20, 30] as
a metric. This metric increases when coordinates with the same label are close
to one another and measures how accurately they can capture label differences.
Furthermore, we qualitatively compared the resulting plots. For model compar-
ison, in addition to the methods used in section 5, we built VSB-DVM+t-SNE
that applies t-SNE to latent coordinates estimated by the latest neural cluster-
ing model, VSB-DVM [23]. The hyperparameters of VSB-DVM are tuned by
minimizing the loss of held-out 1,000 samples using Optuna [36] with 50 trials.
Note that tuning VSB-DVM is time-consuming due to iterative model fitting.
For NPDV(MF) and NPDV(t-SNE), the layer depth, L, the maximum number
of latent dimensions and clusters, Q and K are set to L = 6, Q = 100 and
K = 50, respectively. Appendix D provides The details of experimental settings
and all visualization results.

Quantitative and qualitative comparison Table 2 lists the k-nearest neighbor-
classification accuracies. VSB-DVM+t-SNE and NPDV(t-SNE) outperform other
methods for Fashion-MNIST and 20 news. Notably, NPDV(t-SNE) shows
comparable accuracies with well-tuned VSB-DVM+t-SNE. Fig. 5 and 6 show the

6 http://qwone.com/˜jason/20Newsgroups/
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Table 3: Number of parameters of optimized models.

Method MNIST Fashion-MNIST 20 news
VSB-DVM+t-SNE 133.6 × 106 29.1 × 106 2.81 × 106

NPDV(t-SNE) 1.04 × 106 1.04 × 106 1.04 × 106

Table 4: Elapsed time for tuning. h and m is hours and minutes, respectively.

Method MNIST Fashion-MNIST 20 news
VSB-DVM+t-SNE 5 days 13h 47m 4 days 23h 23m 6 days 0h 13m
NPDV(t-SNE) 8h 32m 8h 6m 8h 19m

resulting plots on Fashion-MNIST and 20 news obtained by the five methods.
For NPDV(t-SNE), NN-iWMM and VSB-DVM+t-SNE, the points are colored
by the estimated clusters. The coloring helps to understand cluster structures
more easily than t-SNE and PaCMAP, as in the simulation study. For 20 news,
NPDV(t-SNE) shows better cluster separation compared to VSB-DVM+t-SNE.
We guess the reason why cluster structures are taken over to visual coordinates
due to the joint training of NN-iWMM and t-SNE.
Computational cost comparison with neural clustering model NPDV(t-
SNE) incurs significantly less computational cost compared to VSB-DVM+t-
SNE. VSB-DVM needs to estimate numerous weights. Consequently, it has
2.8–133 times more parameters than NPDV(t-SNE), as shown in Table 3. Ad-
ditionally, VSB-DVM must tune several hyperparameters, which increases the
computational time. Specifically, it took multiple days with 50 trials, as shown
in Table 4. Conversely, we only focus on layer depth L to train NPDV(t-SNE).
NPDV(t-SNE) finishes computation in a considerably shorter time than VSB-
DVM even if we try all candidates L = {4, 5, 6, 7}.
Latent cluster discovery We investigated the characteristics of the clus-
ters estimated using the NPDV(t-SNE). In addition to the 20 news, we used
the Brown corpus 7. For the Brown corpus, we randomly extracted 5,000
sentences and converted them into sentence vectors using SIF weighting [37].

Fig. 8: Cross table of lower labels in rec
(x-axis) and the clusters (y-axis).

For 20 news, we investigated the
relationships between the four lower
labels in rec and estimated clusters.
The articles in rec belong to one of
23 clusters. Fig. 8 is a cross table of
these labels and clusters. Evidently,
the same labeled articles belong to
specific clusters, while these labels
were not used during training. The
link between labels and clusters in-
dicates that a common topic exists
7 http://korpus.uib.no/icame/manuals/BROWN/INDEX.HTML
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Fig. 9: Visualization of Brown corpus using NPDV(t-SNE). The points are col-
ored by the estimated clusters. The right is an entire plot, and the left shows
three clusters and their sample sentences.

within a cluster because each label represents a single topic. Fig. 9 shows a scat-
ter plot of the Brown corpus. We discovered that some clusters shared topics,
such as religion, social thought, and science. Furthermore, similar themes (reli-
gion and social thought) were placed close, whereas different themes (science)
were distant, based on the first two themes. Therefore, the distance between
clusters reflects the similarity of themes.

From these visualizations, we found that a common topic exists within a
cluster and the distance between clusters reflects the similarity of topics. As
topics can be considered as intrinsic clusters in a dataset, NPDV(t-SNE) can
help to reveal clusters and grasp their similarities.

7 Conclusion

We proposed a nonparametric Bayesian latent variable model, NN-iWMM, and
an associated visualization method, NPDV. NN-iWMM determines the layer
widths, the dimensionality of latent space, and the number of clusters that are
critical to model the latent space without tuning, while leveraging the power of
neural networks implicitly. NPDV estimates the optimal latent coordinates to
learn visual coordinates by integrating NN-iWMM and a visualization method.
Additionally, we introduced NPDV(MF) and NPDV(t-SNE). Both methods en-
able to visualize the internal structure of dataset by utilizing the estimated
clusters. Simulation studies demonstrated that NPDV(MF) infers the intrin-
sic latent manifold better than the existing methods. Real data experiments
demonstrated that NPDV(t-SNE) outperforms conventional methods and shows
comparable accuracy with a well-tuned neural clustering model. Furthermore,
it shows two preferable properties in unsupervised settings: (1) NPDV(t-SNE)
takes considerably less training time than the neural clustering model and (2) it
has the ability to revealing plausible clusters without label information..

In this paper, we limit ourselves to study the properties of NPDV in the case
of using matrix factorization or t-SNE. By considering combination with other
methods, we expect to improve the accuracy and computing efficiency of NPDV.
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