Scale-Invariant Infinite Hierarchical Topic Model

Shusei Eshima Department of Government, Harvard University The shuseieshima@g.harvard.edu

Daichi Mochihashi The Institute of Statistical Mathematics daichi@ism.ac.jp

Problem Statement

- Topic models: summarize, annotate, and categorize documents for a human reader
- Hierarchical topic models: learning hierarchical latent topic organization, especially for a large number of topics (say, > 1000) [1, 2, 3]

Existing models: fragmented tree structures

- Expected probabilities of topics decay exponentially along the depth of tree
- Heuristic rules to update topics
- Restricting the tree structure (e.g., truncating the depth to three levels)

Scale-Invariant Infinite Hierarchical Topic Model (ihLDA)

Document-Topic Distribution:

We apply the hierarchical Dirichlet process separately to the vertical and horizontal probabilities.

 $v_{\epsilon} \sim \operatorname{Be}(a\tau_{\tilde{\epsilon}}, a(1-\sum_{\kappa \leq \tilde{\epsilon}}\tau_{\kappa})) \text{ where } \tau_{\epsilon} = v_{\epsilon} \prod_{\kappa < \epsilon} (1-v_{\kappa})$ $\psi_{\epsilon k} \sim \operatorname{Be}(b\phi_{\tilde{\epsilon}k}, b(1-\sum_{j=1}^{k}\phi_{\tilde{\epsilon}j}))$

Topic-Word Distribution:

- The hierarchical Pitman-Yor process [5]
- The semantic similarity between a parent topic and its children
- Increasing the specificity as the tree deepens

Data Generation Process: $\pi^{(d)} :=$ a TSSB for a doc *d*. 1. Draw a base TSSB $\tilde{\pi}$.

Base TSSB

Document 1

2. Draw topic-word distributions H_{ϵ} from the HPY for each topic in $\tilde{\pi}$.

Document 2 \cdots Document $d \cdots$

Contributions

- 1. Adjusting the probability scale by considering the size of the parent topic \rightarrow less fragmentation
- 2. Extending the tree-structured stick-breaking process (TSSB) [4] \rightarrow variety of applications
- Efficiently drawing an infinite topic tree for each document from a base infinite tree in a hierarchical Bayesian fashion

Scale-Invariant TSSB

TSSB is a crucial building block of recent neural hierarchical topic models [2, 3]. Let $\kappa < \epsilon$ indicate that κ is an ancestor of ϵ ,

$$\pi_{\epsilon} = \nu_{\epsilon} \prod_{\kappa < \epsilon} (1 - \nu_{\kappa}) \cdot \prod_{\kappa \le \epsilon} \phi_{\kappa}, \ \phi_{\epsilon k} = \psi_{\epsilon k} \prod_{j=1}^{k-1} (1 - \psi_{\epsilon j})$$

 $v_{\epsilon} \sim \operatorname{Be}(1, \alpha_0), \ \psi_{\epsilon} \sim \operatorname{Be}(1, \gamma_0).$

► The first term: the probability of stopping at the

Inference:

- Gibbs sampling, Retrospective sampling + Binary search, Slice sampling
- 3. Draw a document-topic distribution for each document $d, \pi^{(d)} \sim \text{HTSSB}(\tilde{\pi}).$
- 4. For each word position *i* in a document *d*, draw a topic, $z_{di} \sim \pi^{(d)}$ and draw a word, $w_{di} \sim H_{z_{di}}$.

Comparing Top Words from Three Models (max level = 3 for comparison)

Proposed:	Probabilistic: nCRP [1]	Neural: TSNTM [2]			
L1: said year would also people	L1: said year one time would	L1: said show year also would			
L2: said people mobile technology phone	L2: said year also would company	L2: said year game world time			
L3: said software site user mail	L3: film show magic would child	L3: england first game ireland win			
L2: said would government people law	L3: film indian star india actor	L3: said labour blair party election			
L3: tax said government would budget	L3: film dvd effect extra man	L3: said would people law gov.			
L3: labour election said party blair	L3: film harry potter dvd warner	L3: said would gov. election tax			
L2: film said best award year	L2: best award film actor actress	L3: said would tax gov. election			
L3: music band song year album	L2: film star story life singer	L3: said would tax gov. election			
L3: game dvd film year sony	L2: film star movie actress also	L3: said would tax gov. election			

Experiments

Data:

- BBC News: 2,225 documents in five topic areas from the BBC news website
- 20News: a collection of 18,828 posts from 20 USENET newsgroups

Topic-Word Probabilities (BBC, L6)

- topic $\boldsymbol{\epsilon}$ vertically.
- The next product terms: to passing ancestors of ϵ while horizontally stopping at ϵ and its ancestors.
- Vertical and horizontal probabilities of stopping follow Beta distribution.

The scale-invariant TSSB rescales γ_0 ,

 $\psi_{\boldsymbol{\epsilon}} \sim \operatorname{Be}(1, \phi_{\boldsymbol{\epsilon}'} \gamma_0).$

Using the horizontal breaking proportion of a parent topic, $\phi_{\epsilon'}$, to draw a *relative* stick length for its child topic \rightarrow A larger break if the stick to break is shorter. The expected probability of horizontal break at ℓ is $\mathbb{E}[\phi|\ell] \approx 1/(2\gamma+1/\mathbb{E}[\phi|\ell-1])$ for $\ell \ge 2$. It was originally $\mathbb{E}[\phi|\ell] \approx 1/(2\gamma+1)^{\ell}$. SI-TSSB has a slower decay.

Wikipedia: 50,153 English articles randomly sampled from ten main categories

Setup: Comparing topics with at least 100 assigned words (no truncation in parentheses)

Top Words of Selected Topics from the Estimated Topic Tree (BBC, L6)

Evaluation Metrics

Level ℓ

References

- [1] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum, "Hierarchical topic models and the nested Chinese restaurant process," in *NIPS*, 2003, pp. 17–24.
- [2] M. Isonuma, J. Mori, D. Bollegala, and I. Sakata, "Treestructured neural topic model," in *ACL*, 2020, pp. 800–806.
- [3] Z. Chen, C. Ding, Z. Zhang, Y. Rao, and H. Xie, "Treestructured topic modeling with nonparametric neural variational inference," in *ACL*, 2021, pp. 2343–2353.
- [4] R. P. Adams, Z. Ghahramani, and M. I. Jordan, "Treestructured stick breaking for hierarchical data," in *NIPS*, 2010, pp. 19–27.
- [5] Y. W. Teh, "A Bayesian interpretation of interpolated Kneser-Ney," NUS School of Computing, Tech. Rep., 2006.

Model	Max	Tree Diversity (↑)		Topic Uniqueness ([†])		Average Overlap (\downarrow)		# of Topics					
	Lvl.	BBC	20News	Wiki	BBC	20News	Wiki	BBC	20News	Wiki	BBC	20News	Wiki
ihLDA	3	2.24	2.88	2.63	0.60	0.82	0.66	0.28	0.11	0.16	38	27	17
		(2.24)	(2.86)	(2.49)	(0.60)	(0.80)	(0.63)	(0.28)	(0.14)	(0.19)	(38)	(31)	(18)
		2.53	2.88	2.50	0.55	0.76	0.65	$\begin{bmatrix} -0.26 \end{bmatrix}$	0.12	0.15	85	67	73
		(2.54)	(2.80)	(2.51)	(0.49)	(0.51)	(0.63)	(0.30)	(0.38)	(0.16)	(134)	(203)	(101)
nCRP	3	1.92	2.16	_	0.36	0.32		0.03	0.02	_	517	2108	_
rCRP		0.15	_	_	0.01	_	—	0.53	_	—	278	_	—
TSNTM	5	1.98	2.54	2.47	0.43	0.80	0.64	0.26	0.09	0.06	22	41	44
nTSNTM		2.11	2.57	2.34	0.46	0.68	0.60	0.09	0.01	0.02	68	81	111

Tree Diversity: uniqueness of topics while considering the importance of the parent topics

- Topic Uniqueness [3]: uniqueness of all topics
- Average Overlap [3]: the average repetition rate of the top words (less overlap does not necessarily mean better interpretability)
- ► The results without truncation are shown in parentheses for the proposed model.