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Abstract
Hierarchical topic models have been employed
to organize a large number of diverse topics
from corpora into a latent tree structure. How-
ever, existing models yield fragmented topics
with overlapping themes whose expected prob-
ability becomes exponentially smaller along
the depth of the tree. To solve this intrin-
sic problem, we propose a scale-invariant in-
finite hierarchical topic model (ihLDA). The
ihLDA adaptively adjusts the topic creation
to make the expected topic probability decay
considerably slower than that in existing mod-
els. Thus, it facilitates the estimation of deeper
topic structures encompassing diverse topics
in a corpus. Furthermore, the ihLDA extends
a widely used tree-structured prior (Adams
et al., 2010) in a hierarchical Bayesian way,
which enables drawing an infinite topic tree
from the base tree while efficiently sampling
the topic assignments for the words. Exper-
iments demonstrate that the ihLDA has bet-
ter topic uniqueness and hierarchical diversity
than existing approaches, including state-of-
the-art neural models.

1 Introduction

Topic models (Blei et al., 2003b; Blei and Lafferty,
2006; Chang and Blei, 2010; Roberts et al., 2016)
have been used to summarize, annotate, and cate-
gorize documents. Recent advances in large-scale
topic models have enabled the estimation of thou-
sands of topics to accommodate various concepts in
a large corpus (Li et al., 2014; Yu et al., 2015; Yuan
et al., 2015; Chen et al., 2016), requiring users to
interpret numerous topics.

Hierarchical topic models have been proposed
to improve the topic organization by learning the
latent topic hierarchy (Blei et al., 2003a, 2010;
Adams et al., 2010; Kim et al., 2012; Paisley et al.,
2015; Isonuma et al., 2020; Chen et al., 2021).
However, these hierarchical topic models will cre-
ate a fragmented tree structure with the probabil-
ities of a substantial number of topics becoming

exponentially smaller. These topics typically have
few assigned words and similar word distributions.
Recent hierarchical topic models with neural archi-
tectures (Isonuma et al., 2020; Chen et al., 2021)
have the same issue of topic fragmentation and use
a fixed number of layers for all documents (Duan
et al., 2021).

The reason for the topic fragmentation is that the
stick-breaking process (Sethuraman, 1994) used
in existing models creates topics whose expected
probability decays along the depth of the tree. Ex-
isting models alleviate the issue by restricting the
tree structure, for example by truncating the depth
to three levels. Isonuma et al. (2020) also intro-
duced a topic-diversity regularizer and a heuristic
rule to update topics, whereas Chen et al. (2021)
truncated topics based on their corpus coverage.

To address this intrinsic issue of topic proba-
bilities, we propose a scale-invariant hierarchical
infinite topic model (ihLDA) and make three main
contributions. First, the ihLDA adjusts the prob-
ability scale of the stick-breaking process at each
level by considering the size of the parent topic to
avoid fragmented topic structures. The expected
topic probability of the ihLDA decays considerably
slower than that of the existing models, thereby re-
flecting the diversity of topics in a corpus by using a
flexible depth and width. The existing probabilistic
and neural models that leverage the stick-breaking
process can also benefit from our model.

Table 1 compares the top words of several topics
from different topic models: the ihLDA estimates
topics with general words in the shallower levels
(L1 and L2), and topics with more specific words at
a deeper level (L3). In contrast, nCRP and TSNTM
will create topics with overlapping themes. The
columns of nCRP and TSNTM show that most
topics share the top words, even at the third level
because of the issue described above.

Second, the ihLDA extends the tree-structured
stick-breaking process (TSSB; Adams et al., 2010),



Figure 1: Overview of the tree-structured stick-breaking process (TSSB) in Adams et al. (2010). The blue intervals
represent topics with probabilities proportional to their widths. A path of a topic is denoted in square brackets, and
the solid lines show connections between topics. The right-hand tree recasts the topic structure. ψ’s are the
horizontal probabilities of breaking the stick, and each π denotes the probability of using a topic.

Proposed: ihLDA Probabilistic: nCRP (Blei et al., 2003a) Neural: TSNTM (Isonuma et al., 2020)

L1: said year would also people L1: said year one time would L1: said show year also would
L2: said people mobile technology phone L2: said year also would company L2: said year game world time

L3: said software site user mail L3: film show magic would child L3: england first game ireland win
L2: said would government people law L3: film indian star india actor L3: said labour blair party election

L3: tax said government would budget L3: film dvd effect extra man L3: said would people law government
L3: labour election said party blair L3: film harry potter dvd warner L3: said would government election tax

L2: film said best award year L2: best award film actor actress L3: said would tax government election
L3: music band song year album L2: film star story life singer L3: said would tax government election
L3: game dvd film year sony L2: film star movie actress also L3: said would tax government election

Table 1: Top words from the selected topics (BBC corpus). The ihLDA shows a clear topic hierarchy
where children of the parent topics constitute the subtopics. nCRP and TSNTM can create topics with
overlapping top words. The maximum number of levels is fixed at three (L3) for comparison.

a prior for a latent hierarchy that is also employed
in recent neural models and various applications
(Deshwar et al., 2015; Chien, 2016; Nassar et al.,
2019). The ihLDA enables drawing an infinite
topic tree for each document from a base infinite
tree in a hierarchical Bayesian fashion.

Finally, we implement an efficient algorithm that
can draw the topics and hierarchical structures from
the tree-structured prior without enumerating all
possible candidates.

We empirically show that the ihLDA performs
better in topic quality using two measures and
crowdsourced evaluation. Moreover, the number
of estimated topics by the ihLDA is comparable to
that by existing models, even when a tree is deeper
than three levels.

2 Background: Tree-Structured
Stick-Breaking Process

A tree-structured stick-breaking process (TSSB)
(Adams et al., 2010) is a prior for constructing a
topic tree of theoretically unbounded depth and
width, comprising two types of stick-breaking pro-
cesses (Sethuraman, 1994). Figure 1 illustrates a
draw from the TSSB, where each blue interval rep-
resents a topic, whereas the square brackets denote
the path to reach it.1 Hierarchical topic models

1This path notation is adapted from Isonuma et al. (2020)
and is different from that in Adams et al. (2010).

assign a latent topic to each word in a document.
As an equivalent representation of the Dirich-

let process (see Appendix A for details), a stick-
breaking process repeatedly breaks a stick of length
1, where each broken stick corresponds to a topic
with the length equal to its probability. Appendix B
provides a formal definition and illustration of the
stick-breaking process.

Here, we introduce notation to formalize the
TSSB. Topic ε at the level |ε| in a tree has its an-
cestors and children. Let κ≺ ε indicate that κ is
an ancestor of ε: in Figure 1, topic [1 1 1] has two
ancestors, {κ : κ≺ [1 1 1]} = {[1], [1 1]}. Specifi-
cally, we use a prime symbol ′ to denote the parent
topic, i.e., [1 1 1]′ = [1 1]. The child topics of ε are
{εk : k ∈ 1, 2, 3, . . .}. For example, topic [1 2] in
Figure 1 has children [1 2 1], [1 2 2], · · · .

Given this setup, the probability assigned to a
topic ε under TSSB can be expressed as a product
of stick-breaking processes:

πε = νε
∏
κ≺ε

(1−νκ) ·
∏
κ�ε

φκ , (1)

where φεk = ψεk
∏k−1
j=1(1−ψεj). The first term in

Equation (1) is the probability of stopping at the
topic ε vertically. The next product terms refer to
passing ancestors of ε while horizontally stopping
at ε and its ancestors. These vertical and horizontal
probabilities of stopping follow Beta distributions:



νε ∼ Be(1, α0) , ψε ∼ Be(1, γ0) . (2)

Appendix C presents an example of this process.
We also introduce a scaling factor λ used in

Adams et al. (2010) and set α0 at each level,
αε=α|ε| ·λ|ε|−1, 0≤λ ≤ 1, instead of α0 in Equa-
tion (2). This parametrization makes a word more
likely to stop as |ε| becomes larger, i.e., deeper in
the tree. Hereafter, we do not use subscript ε and
denote αε as α for simplicity.

3 Scale-Invariant TSSB

Although the TSSB constitutes a crucial building
block of recent hierarchical topic models (Ison-
uma et al., 2020; Chen et al., 2021), the expected
probability of each topic in the TSSB decays ex-
ponentially along the depth of the topic hierarchy.
Figure 2(a) shows two topic trees drawn from the
original TSSB: topics in the third and the fourth
levels have extremely small probabilities compared
to the topics in the higher levels, resulting in a topic
fragmentation in the tree.

This property of the TSSB is attributed to the
probability of a horizontal stop, ψε, having the
same expectation regardless of the level. As shown
in Appendix D, the expected probability of a hori-
zontal break at the level ` is E[φ |`]≈1/(2γ+1)`,
where the level appears in the exponent of the de-
nominator. The dotted line in Figure 3 depicts this
exponential decay with `.

To avoid this exponential decay, we rescale γ0
in Equation (2):

ψε ∼ Be(1, φε′γ0), (3)

where we set φε′ = 1 when ε is the root topic.
Hereafter, we denote γ=γε=φε′γ0 for simplicity.

The key idea in Equation (3) is to use the hori-
zontal breaking proportion of a parent topic, φε′ ,
to draw a relative stick length for its child topic,
ψε, creating a larger break if the stick to break is
already short. As presented in Appendix D, this
new parametrization yields the average stick length
E[φ |`]≈1/(2γ + 1/E[φ |`−1]) for ` ≥ 2, which
achieves an invariant partitioning scale by not de-
caying exponentially with `. The solid lines in
Figure 3 depict the effect of this new parametriza-
tion.

Figure 2(b) shows our scale-invariant TSSB with
the same hyperparameters as in (a). The probability
of the topics is less likely to decrease at the deeper
levels in (b).

(a) Original TSSB in
Adams et al. (2010)

(b) Scale-Invariant TSSB
(proposed)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

α0 = 3.5, γ0 = 2, λ = 0.25

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

α0 = 5, γ0 = 4, λ = 0.3

Figure 2: Original TSSB (left) and scale-invariant
TSSB (right). Each interval is a latent topic with proba-
bility proportional to the width. Each row has the same
hyperparameter values except for the proposed adjust-
ment. The figure does not show the solid lines that
indicate topic connections in Figure 1. The proposed
method does not create topics with small probabilities.

4 Scale-Invariant Infinite Hierarchical
Topic Model

We employ our scale-invariant TSSB to model the
hierarchical latent topics in a document. Topic mod-
els consist of two types of distributions: document-
topic distributions for topic composition and topic-
word distributions for word emission. The ihLDA
leverages the scale-invariant TSSB in Section 3
to construct the former and employs a hierarchi-
cal Pitman-Yor process (Teh, 2006) for the latter.
Combining both distributions will embed the top-
ics into an infinite tree, which we call the ihLDA,
scale-invariant infinite hierarchical LDA.

4.1 Document-Topic Distribution

The topic composition of each document differs
for each document, but the topics must be shared
across all the documents. In this regard, we general-
ize the scale-invariant TSSB to a hierarchical tree-
structured stick-breaking process (HTSSB). The
HTSSB generates document-specific topic prob-
abilities while making these topics shared by all
documents.

Specifically, we hierarchically generate a child
TSSB for a document from the base TSSB, as
shown in Figure 4. It applies the hierarchical
Dirichlet process (HDP; Teh et al., 2006) sepa-
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Figure 3: Expected probability of a horizontal stop
at each level. Three different root topic probabilities
are considered for the scale-invariant TSSB. The scale-
invariant TSSB displays a slower decay than the origi-
nal TSSB. The value of γ0 is fixed at 0.8.

rately to the vertical and horizontal probabilities
that constitute the TSSB in Equations (2) and (3).
In this regard, the HTSSB is an infinite product of
the HDPs in terms of its component probabilities.
Appendix E provides a formal explanation of the
HDP in a topic model context.

We use the tilde symbol (˜) to denote a corre-
sponding topic in the base TSSB. When ε is a topic
(say, ε=[1 1 4]) in a child TSSB, ε̃ represents the
same topic ([1 1 4]) in the base TSSB. We can deter-
mine the probabilities for vertical stopping at node
ε as follows, based on the theory of the HDP (Teh
et al., 2006): νε∼Be(aτε̃, a(1−

∑
κ�ε̃ τκ)) where

τε = νε
∏

κ≺ε(1−νκ). Similarly, the probability
for horizontal stopping at the k’th child of ε is
ψεk∼Be(bφε̃k, b(1−

∑k
j=1 φε̃j)). We can draw a

topic tree, π, for each document with these vertical
and horizontal probabilities by using Equation (1).
Note that the topic assignments in each document
affect the base TSSB because each TSSB shares the
same topics across the documents in the HTSSB.

... ...

... ...

Figure 4: The HTSSB yields child TSSBs from the
base TSSB. Although child TSSBs have the same top-
ics as the base TSSB, the probabilities of the topics are
different. Each child TSSB corresponds to the topic dis-
tribution for a single document. The horizontal proba-
bilities in Figure 1 are omitted in this figure for simplic-
ity.

4.2 Topic-Word Distributions

The hierarchical Pitman-Yor process (HPY; Teh,
2006) provides the semantic similarity between a
parent topic and its children while increasing the
specificity of the topics as the tree deepens. Let Hε

be the probability distribution over words for topic
ε. We use a Pitman-Yor process (Pitman and Yor,
1997; Goldwater et al., 2005) as a prior for Hε:
Hε ∼ PY(d|ε|, θ|ε|, Hε′). We repeat this process
until it reaches the root of the topic tree where
we use H0 as a prior: H[1] ∼ PY(d0, θ0, H0). If
the size of the lexicon is V , we set H0=1/V for
all words in the corpus. The tree structure of the
topic-word distribution is the same as that of the
base TSSB. Thus, all topics in a document have
a corresponding topic-word distribution because a
child TSSB is drawn from the base TSSB for each
document.

4.3 Data Generation Process

We summarize the generation process of the docu-
ments in the ihLDA as follows: Let π(d) specify a
TSSB for a document d.

1. Draw a base TSSB π̃.
2. Draw topic-word distributions Hε from the

HPY for each topic in π̃.
3. Draw a document-topic distribution for each

document d, π(d) ∼ HTSSB(π̃).
4. For each word position i in a document d,

• draw a topic, zdi ∼ π(d), and
• draw a word, wdi ∼ Hzdi .

5 Inference

5.1 Vertical and Horizontal Probabilities

The vertical and horizontal probabilities in Equa-
tions (2) and (3) determine the topic hierarchy.
We employ the Chinese restaurant district process
(CDP; Paisley and Carin, 2009, see Appendix F)
representation of the Dirichlet process for each
document-specific topic structure (child TSSB) and
a shared topic structure (base TSSB).

We count the number of words that have stopped
at a topic ε as n0(ε) for a vertical stop and m0(ε)
for a horizontal stop, along with the number of
words that have passed ε as n1(ε) for a vertical
pass and m1(ε) for a horizontal pass. In addi-
tion, we define n(ε)=n0(ε)+n1(ε) and m(ε)=
m0(ε)+m1(ε). After conditioning on the observed
data and the rest of the probabilities, we can ob-
tain the expectation of the posterior of the vertical



and horizontal probabilities as: ν̂ε = E[νε |rest] =
(1+n0(ε))/(1+α+n(ε)) and ψ̂ε = E[ψε |rest] =
(1 +m0(ε))/(1 + γ +m(ε)). Finally, using Equa-
tion (1), we can compute the expectation of the
posterior πε as E[πε |rest] = ν̂ε

∏
κ≺ε

(
1 − ν̂κ

)
·∏

κ�ε φ̂ε where φ̂εk = ψ̂εk
∏k−1
j=1(1− ψ̂εj).

Following the same idea, we apply a hierarchi-
cal CDP to the HTSSB. More specifically, when
a word w stops vertically at a topic ε in a child
TSSB for a document, we probabilistically up-
date the counts of the corresponding topic ε̃ in
the base TSSB with a probability proportional
to aνε̃/(a+n(ε)). We update the count only in
the child TSSB with a probability proportional to
n(ε)/(a+n(ε)). Horizontal probabilities have the
same count update process: a probability propor-
tional to bψε̃/(b+m(ε)) is used to update the base
TSSB and m(ε)/(b+m(ε)) for the child TSSB.
The expectation of the posterior vertical and hori-
zontal probabilities in a document d is similar to
that shown above,

E
[
ν
(d)
ε |rest

]
=

aτε̃ + n0(ε)

a(1−
∑

κ≺ε̃ τκ) + n(ε)
,

E
[
ψ
(d)
εk |rest

]
=

bφε̃k +m0(εk)

b(1−
∑k−1

j=1 φε̃′j) +m(εk)
.

We employ slice sampling (Neal, 2003)2 to esti-
mate all hyperparameters in our model, that is,
{α|ε|, γ0, λ, a, b}.

5.2 Topic Assignments
The ihLDA has an infinite number of topics, and all
possible topics in a tree cannot be enumerated. Our
Gibbs sampling strategy implements a combination
of retrospective sampling (Papaspiliopoulos and
Roberts., 2008) and binary search, which follows
the original approach used in the TSSB (Adams
et al., 2010). The key observation is that each topic
in a tree takes a certain share of a stick of length
1 (see Figure 1). Therefore, we draw a uniform
random variable, u∼Unif [0, 1), to find a random
topic that corresponds to u. Algorithm 1 outlines
the Gibbs sampling process of topic assignment for
each word. The function does not need to enumer-
ate all the topics, because it only compares the new
likelihood q with the slice variable ρ. Algorithm 2
is a function for finding a topic that corresponds to
a value in [0, 1). This function rescales u as it goes
down the tree.

2Specifically, we used the unbounded slice sampling
(Mochihashi, 2020) to sample from [0,∞) effectively.

Algorithm 1 Gibbs sampling of a topic
function sample_assignment(ε)
a = 0; b = 1; ρ = Unif [0, 1) · p(ε)
while True do

u = Unif [a, b)
ε′ = find_topic(u, εroot)
q = p(ε′)
if q > ρ then return ε′

else
if ε′ < ε then b = u else a = u

end if
end while
end function

Algorithm 2 Finding a topic
function find_topic(u, ε)
if u < νε then

return ε
else

u = (u−νε)/(1−νε); k = 1
while True do

if u < 1−
∏k

j=1(1−ψεj) then break
else

k += 1
Create εk if necessary

end if
end while

u =
(u−1)(1−ψεk) +

∏k
j=1(1−ψεj)

ψεk ·
∏k

j=1(1−ψεj)

return find_topic(u, εk)
end if
end function

5.3 Other Parameters

Parameters in the HPY are also updated during the
topic sampling in the HTSSB. Appendix B of Teh
(2006) provides an inference strategy for sampling
θ and d used in the ihLDA.

6 Experiments

6.1 Data

In our experiments, we used the BBC News cor-
pus (Greene and Cunningham, 2006), the 20News
corpus (Lang, 1995), and the original Wikipedia
corpus. The BBC News corpus contains 2,225 doc-
uments in five topic areas from the BBC news
website, the 20News corpus is a collection of
18,828 posts from 20 USENET newsgroups, and
the Wikipedia corpus comprises 50,153 English ar-
ticles randomly sampled from ten main categories3

and their subcategories. We selected 80% of the
data randomly for training.

3Art, engineering, computer science, food, humanities,
medicine, nature, social science, sports, and statistics



Model Max Tree Diversity (↑) Topic Uniqueness (↑) Average Overlap (↓) # of Topics
Lvl. BBC 20News Wiki BBC 20News Wiki BBC 20News Wiki BBC 20News Wiki

ihLDA
3 2.24 2.88 2.63 0.60 0.82 0.66 0.28 0.11 0.16 38 27 17

(2.24) (2.86) (2.49) (0.60) (0.80) (0.63) (0.28) (0.14) (0.19) (38) (31) (18)

≥ 4
2.53 2.88 2.50 0.55 0.76 0.65 0.26 0.12 0.15 85 67 73

(2.54) (2.80) (2.51) (0.49) (0.51) (0.63) (0.30) (0.38) (0.16) (134) (203) (101)
nCRP

3

1.92 2.16 – 0.36 0.32 – 0.03 0.02 – 517 2108 –
rCRP 0.15 – – 0.01 – – 0.53 – – 278 – –

TSNTM 1.98 2.54 2.47 0.43 0.80 0.64 0.26 0.09 0.06 22 41 44
nTSNTM 2.11 2.57 2.34 0.46 0.68 0.60 0.09 0.01 0.02 68 81 111

Table 2: Evaluation on different corpora. The proposed ihLDA performs better than existing models in
two measurements, Tree Diversity (higher is better) and Topic Uniqueness (higher is better). Average
Overlap (lower is better) might have a limitation explained in the main text. Existing probabilistic models
(nCRP and rCRP) create tiny topics, whereas neural models (nTSNTM and TSNTM) regularize the topics.
For comparison, we truncate the topics that do not have at least 100 assigned words. The results without
truncation are shown in parentheses for the ihLDA.

6.2 Experimental Setup

We compared the ihLDA against two probabilistic
and two neural topic models, namely, the nested
Chinese restaurant process (nCRP; Blei et al.,
2003a), the recursive Chinese restaurant process
(rCRP; Kim et al., 2012), the tree-structured neu-
ral topic model (TSNTM; Isonuma et al., 2020),
and the nonparametric tree-structured neural topic
model (nTSNTM; Chen et al., 2021). The publicly
available replication codes for the rCRP, TSNTM,
and nTSNTM were used along with a package for
the nCRP (Lee, 2021). We used the default pa-
rameter values. As both neural models internally
truncate the topics, the results were based on topics
with at least 100 assigned words for a fair compari-
son. The maximum level of the ihLDA was six for
BBC News and 20News even when we made the
model unbounded but we truncated the tree at four
for Wikipedia. All the experiments were conducted
on a cluster computer with a Python 3 environment
(Intel Xeon CPU 2.2-2.3 GHz and 10 GB RAM).
We do not report the results of nCRP on Wikipedia
and rCRP on 20News and Wikipedia, because they
required more than two weeks to complete 10,000
iterations.

6.3 Numerical Evaluation

We employed two measures (TU and AO) from the
existing literature and developed a new measure
(TD) to compare the performance of the ihLDA
with those of the existing approaches.

First, the topic uniqueness (TU) calculates the
uniqueness of all topics (Nan et al., 2019; Masson
and Montariol, 2020; Chen et al., 2021). A higher
TU implies that the topics represent unique themes.
Second, the average overlap (AO) measures the

average repetition rate of the top u words between
the parent topic and its children (Chen et al., 2021).
A lower AO indicates that less overlap occurs be-
tween the top words from a parent and those from
its children. Although this measure was used in
Chen et al. (2021), parent and child topics need
some overlapping words to have semantic coher-
ence; thus, a smaller AO does not always mean
better interpretability. Appendix G provides formal
definitions of these two measures.

Finally, the tree diversity (TD) is a new measure
for assessing child topics as being unique, while
considering the importance of the parent topics.
Let T be a set of topics in the estimated tree, C(ε)
be a set of topics that are the children of a topic ε,
D(ε) be a set of topics that are descendants of a
topic ε, and VN be a set of unique words that are
used for the top u words of a set of topics N . We
define TD as follows:

TD =
∑
ε∈T

wε

|VC(ε)|
u|C(ε)|

; wε =
|D(ε)|∑

κ∈T |D(κ)|
.

The fraction in TD is the proportion of unique
words among the top words of the children of ε.
Then it takes the sum of the fraction weighted by
the normalized importance of each topic, that is,
the proportion of descendants of ε. A higher TD is
better because it implies that the top words in child
topics contain more unique words.

Table 2 summarizes the results and the estimated
number of topics. All metrics are calculated with
different numbers of top words (u=5, 10, and 15),
and we report their average. The ihLDA performs
better than the existing models in terms of the TD
and TU. Existing probabilistic models (nCRP and
rCRP) create too many topics in comparison with



the ihLDA, even though they truncate the topic tree
at three levels. The ihLDA shows a reasonable
number of topics even when it has a deeper tree
without truncation, as shown in the parentheses.
The two neural models, TSNTM and nTSNTM,
find fewer topics than the ihLDA but have lower
performance in the BBC News and 20 News corpora
and have a lot of redundancy as shown in Table 1.
With the Wikipedia corpus, the ihLDA estimates
17 topics when the depth is fixed at three, which
is a reasonable number given that the Wikipedia
corpus is sampled from ten categories and their
subcategories (see footnote 3).

6.4 Crowdsourced Evaluation

We devised three human evaluation tasks to assess
both the interpretability and the hierarchical struc-
ture of the topics. An interpretable hierarchical
topic model should show similarity between parent
and child topics, while each child topic is coherent
and distinctive from others.

The first task, Word Intrusion, is a slight alter-
ation from the methods in Chang et al. (2009) and
Ying et al. (2022). To measure the coherence of the
estimated topics, crowdsourced workers observed
four different word sets (each word set consists of
four words). Three word sets were randomly se-
lected from the top words of one topic, whereas
the other set (the intruder) was randomly selected
from those of a different topic that did not share the
parent topic with the three word sets. The “correct”
answer means that a worker identified the intruder
word set.

The second task, Vertical, is an original task to
measure the hierarchical structure. The workers
observed four items and categorized them into two
groups. We represented the items and groups with
four words randomly chosen from the top words,
where each item was a child topic of one of the
groups. The “correct” answer means that a worker
categorized a child topic into its parent topic.

The third task, Horizontal, is also an original
task to measure horizontal distinctiveness. The
workers grouped four items represented by four
words randomly selected from the top words of
topics that had the same parent topic. The same
topic could appear in multiple items. The “correct”
answer means that a worker categorized items from
the same topic into the same group. If a model esti-
mates overlapping topics, a worker cannot provide
the correct answer.

Horizontal
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Word Intrusion

ihLDA L=3 ihLDA L=6 nCRP TSNTM nTSNTM
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Figure 5: Crowdsourced validation. The performance
of the ihLDA (the maximum levels are three and six) is
at least statistically indistinguishable from the best ex-
isting model and better than the worst existing model.

(a) BBC (b) 20News
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Figure 6: The estimated global base tree prior π̃ in
HTSSB. Topics do not decay exponentially along the
depth of the tree.

We used the outputs from the BBC News corpus
because news articles are accessible and familiar to
crowdsourced workers from Amazon Mechanical
Turk (Ying et al., 2022). We dropped workers who
failed to pass our quality check questions and those
who spent too little (bottom 10%) or too much (top
10%) time4. Appendix H describes more details of
crowdsourced experiments.

Figure 5 illustrates the proportion of correct an-
swers, weighted to represent each level equally.
The performance of the proposed model is at least
statistically indistinguishable from the best existing
model and better than the worst existing model in
all tasks. nCRP exhibits competitive performance,
but this is because it creates numerous specific top-
ics even for a small corpus as shown in Table 2.

6.5 Estimated Tree Structure

Figure 6 displays π̃, the estimated global tree prior
in the ihLDA. Both (a) and (b) show that topics do
not decay significantly even if the maximum level
is six.

Figure 7 presents the top five words for some

4The total number of observations was 535 (Word Intru-
sion), 900 (Vertical), and 620 (Horizontal).
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Figure 7: Top words from the selected topics (BBC corpus). The maximum level is six. Figure 8 explains the
colored branches.
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Figure 8: Selected topic-word probabilities from the
first (red), third (blue), and fourth (green) branches
from the left in Figure 7. Proper nouns have higher
probabilities at the bottom of the tree, while general
terms appear more frequently at the top levels. Each
branch represents a different theme.

topics that facilitate comparison between models.
The ihLDA estimates topics with general words in
the first and the second levels, and topics become
more specific at lower levels. Figure 8 supports
this topic specificity: proper nouns have higher
probabilities at the bottom of the tree, whereas
general terms appear more frequently at the top
levels.

7 Related Work

The existing models have heuristically addressed
the issue of topic fragmentation by truncating top-
ics at a certain threshold and truncating the tree
structure to a small number of levels. Adams et al.
(2010) constructed a hierarchical document model
with the TSSB5 and truncated the topics with less
than 50 assigned documents when the corpus had
1740 documents. The nTSNTM (Chen et al., 2021)
sequentially selected the topics until the sum of
probabilities in the corpus exceeded 95%. Existing
probabilistic approaches (Blei et al., 2003a, 2010;

5The topic model in Adams et al. (2010) differs from our
setting. In their experiments, each node has a unique topic
distribution.

Kim et al., 2012; Paisley et al., 2015) only consider
three levels. Isonuma et al. (2020) introduced neu-
ral architectures but fixed the number of levels to
three with an initial number of three branches for
both the second and third levels.

Another advantage of the ihLDA is that it em-
ploys a hierarchical Bayesian extension of the
TSSB to draw a child TSSB from the base TSSB
(see Figure 4). Unlike some probabilistic mod-
els that restrict a document-topic distribution to a
single or multiple topic-path on a tree (Blei et al.,
2003a, 2010; Paisley et al., 2015), ihLDA does not
limit topics that can appear in a document.

Hierarchical topic models have a wide range
of extensions (Mao et al., 2012; Yang and Hsu,
2016; Shin and Moon, 2017; Xu et al., 2018; Zou
et al., 2019; Isonuma et al., 2021), and the ihLDA is
orthogonal to them and useful for these extensions.

8 Conclusion

Existing hierarchical topic models yield topics with
exponentially smaller probabilities. To address this
intrinsic issue, we propose the ihLDA, a nonpara-
metric Bayesian model that learns a latent topic hi-
erarchy with arbitrary depth and width. Our model
adjusts topic creation to achieve the expected topic
probability without dependence on its depth, which
can also improve other models that use the stick-
breaking process. As a topic model, the ihLDA
is a hierarchical extension of the TSSB and draws
topic assignments efficiently without enumerating
all possible candidates. Our experiments on stan-
dard document datasets confirm that the ihLDA out-
performs the existing methods, including the latest
neural models, and extracts meaningful topic struc-
tures with better hierarchical diversity and unique-
ness.



Limitations

Although the ihLDA shows better performance
than existing models in multiple experiments, there
are three limitations that we did not fully address
in this paper.

First, the Gibbs sampling is slower than other
approaches such as autoencoding variational Bayes
(Kingma and Welling, 2014), which limits data
scalability. We can incorporate the literature on
distributed algorithms for topic modeling (Newman
et al., 2009; Yu et al., 2015; Karras et al., 2022) and
variational inference (Wang and Blei, 2009; Wang
et al., 2011; Bryant and Sudderth, 2012; Hughes
et al., 2015) in future research.

Second, crowdsourced evaluation limits a cor-
pus choice because we should not expect workers
to have any prior knowledge (Ying et al., 2022).
Our crowdsourced evaluation only used BBC News,
the most accessible documents among the three
corpora. Future research can thoroughly validate
the performance of the crowdsourced workers and
trained coders. Existing literature (Buhrmester
et al., 2016; Kees et al., 2017) found that MTurk
had a comparable quality against traditional survey
panels, but they did not use MTurk for evaluating
outputs from a machine learning model.

Third, an estimated hierarchical structure does
not necessarily match the semantic hierarchy hu-
man readers expect. This mismatch is not surpris-
ing because unsupervised models do not directly
incorporate information about a tree structure. Ex-
isting papers improved the interpretability of flat
topic models by providing topic-specific sets of
keywords (Jagarlamudi et al., 2012; Harandizadeh
et al., 2022) and labels (Mcauliffe and Blei, 2007;
Ramage et al., 2009), which is a future direction
for a hierarchical topic model.
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Appendix

A Dirichlet Process

The Dirichlet process (DP) is the foundation of
nonparametric Bayesian models. As the ihLDA is
an infinite mixture model (i.e., an infinite number
of topics can exist), we draw the topics using the
DP.

Formally, G is a DP with a base distribution G0

and a concentration parameter c:

G ∼ DP(c,G0). (4)

The DP has three representations: the stick-
breaking process, the Chinese restaurant process,
and the Chinese restaurant district process.

B Stick-Breaking Process

Formally, the stick-breaking representation of a DP
with a base distribution G0 and a concentration
parameter c, G∼DP(c,G0), is

G =

∞∑
k=1

δηkπk, πk = vk

k−1∏
j=1

(1− vj),

vk ∼ Be(1, c), ηk ∼ G0,

where ηk takes a distinct value to indicate a single
category. Figure 9 depicts this process.
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Figure 9: Stick-breaking process. This process sequen-
tially breaks a stick of length 1 proportional to vk. The
length of a broken piece represents the probability of
the category.

C An Example of TSSB

In a hierarchical topic model, we consider both the
vertical and horizontal placements of each word
in a tree. To assign a topic for each word in the
corpus, we first determine whether the word uses
the root topic [1] (i.e., the word stops at [1]) or not
(i.e., the word passes [1]) according to a vertical
probability ν[1] ∼ Be(1, α0). The probability of
stopping at [1] is thus π[1]=ν[1]. If the word passes
[1], it goes down to the next level. Each solid line
in Figure 1 connects a parent topic to its children
in the next level. At the second level, horizontal
stopping probabilities, ψ[1 1], ψ[1 2], ψ[1 3], · · · , de-
termine the child topic to descend. Subsequently,
the vertical probabilities ν[1 1], ν[1 2], ν[1 3], · · · , de-
cide whether the word stops or proceeds further
down the tree. We repeat this process until the
word stops both vertically and horizontally. For
example, the probability of using the topic [1 2 2]
can be computed as follows:

π[1 2 2] =
(
1− ν[1]

)
×
(
1− ν[1 2]

)
· ψ[1 2] ·

(
1− ψ[1 1]

)
× ν[1 2 2] · ψ[1 2 2] ·

(
1− ψ[1 2 1]

)
.

D The Expected Probability of Topics in
Hierarchical Stick-Breaking Process

We consider the following stick-breaking process:

φk = vk

k−1∏
j=1

(1− vj), vk ∼ Be(1, γ).

The expectation of parameter vk is E[vk]=1/(1+
γ); hence, the expected probability of the kth bro-
ken stick is,

E[φk] =
1

1 + γ

(
γ

1 + γ

)k−1
=

1

γ

(
γ

1 + γ

)k
.

Next, we consider the expected probability of a

topic in the stick-breaking process,

E[φ] =
∞∑
k=1

E[φk] · φk

≈
∞∑
k=1

E[φk]2

=
∞∑
k=1

(
γ

γ + 1
· 1
γ

)2

=
1

γ2

∞∑
k=1

(
1(

1 + 1
γ

)2)k
=

1

γ2
· 1(

1 + 1
γ

)2 − 1

=
1

2γ + 1
,

where the expectation of φk is used for the approxi-
mation. Using the standard stick-breaking process,
the expected probability of the topic at the `th level
is

E[φ |`] = E[φ |`− 1] · E[φ] ≈ 1

(2γ + 1)`
,

where the first equality means that the (`−1)th
level stick is broken at the `th level. Because of the
modification described in Section 3, the expectation
becomes

E[φ |`] = E[φ |`− 1] · E[φ]

≈ E[φ |`− 1] · 1

2(γ · E[φ |`− 1]) + 1

=
1

2γ + 1/E[φ |`−1]
for ` ≥ 2 .

If ` = 1 (the root level), then E[φ |` = 1] =
1/(2γ+1). The expected probability of the topic
does not become exponentially smaller even when
proceeding down the tree.

E Hierarchical Dirichlet Process

Suppose that the global distribution of topics G is
distributed as a DP with the concentration parame-
ter c: G∼DP(c,G0). The actual distribution over
the topics in the dth document, Gd, follows another
DP, Gd∼DP(c0, G); hence, the distribution of Gd
varies around G. Given Gd, we can draw a topic
assignment for each word in the dth document.

F Chinese Restaurant District Process

As shown in Figure 10, the CDP uses the counts
of n words to determine a category z for the next



Figure 10: Chinese restaurant district process (CDP).
Each word either passes or stops at a category. The
CDP creates a new category if a word does not stop at
any existing category.

Topic n0 n1 m0 m1

[1] 0 1 1 0
[1 1] 0 0 0 1
[1 2] 0 0 0 1
[1 3] 1 0 1 0

Figure 11: Updating counts according to the CDP. The
first word w1 passes [1], [1 1], and [1 2], and then stops
at [1 3].

word:

p(zn+1 ≥ k |z1:n) =
1 +

∑∞
j=k+1 nj

1 + α+
∑∞

j=k nj
,

where α is the concentration parameter correspond-
ing to Equation (2). In the CDP terminology, a
word using the kth category is referred to as “stop-
ping at k” and that using the jth (j > k) category
is referred to as “passing k”. Each word passes
through categories until it stops; hence, we keep
track of the number of data points that stopped and
passed at each category.

To compute the vertical and horizontal probabil-
ities νε and ψε, we count the number of words that
have stopped at a topic ε as n0(ε) for a vertical
stop and m0(ε) for a horizontal stop, as well as the
number of words that have passed ε as n1(ε) for a
vertical pass and m1(ε) for a horizontal pass.

Suppose that the first word stops at [1 3] in Fig-
ure 11. For this to occur, the word passes the root
topic, [1], goes down to the next level, and passes
two child topics, [1 1] and [1 2]. Hence, n0([1])=0
and n1([1]) = 1 when passing the root topic, and
m0([1 1])=m0([1 2])=0, m1([1 1])=m1([1 2])=
1, m0([1 3]) = 1, and m1([1 3]) = 0 when hor-
izontally stopping at the third child of the root
topic. As the word vertically stops at the topic
[1 3], the vertical count becomes n0([1 3]) = 1
and n1([1 3]) = 0. If the word vertically passes
the topic [1 3] and further goes down the topic
tree, then n0([1 3]) = 0 and n1([1 3]) = 1. In
addition, we define n(ε) = n0(ε) + n1(ε) and
m(ε)=m0(ε)+m1(ε).

Using pass and stop counts from the CDP, we
can obtain the posterior distribution of the vertical
and horizontal probabilities, νε and ψε, because the
construction of πε is the result of choosing “stop”
or “pass” on the way to reach ε:

νε |rest ∼ Be(1 + n0(ε), α+ n1(ε)) (5)

ψε |rest ∼ Be(1 +m0(ε), γ +m1(ε)) (6)

Note that each probability is conditioned on the
observed data and rest of the probabilities. By
taking the expectations of Equations (5) and (6),
we obtain

ν̂ε = E[νε |rest] =
1 + n0(ε)

1 + α+ n(ε)
,

ψ̂ε = E[ψε |rest] =
1 +m0(ε)

1 + γ +m(ε)
.

(7)

G Details of Evaluation Measures

G.1 Topic Uniqueness

Topic uniqueness (TU) calculates the uniqueness of
all topics (Nan et al., 2019; Masson and Montariol,
2020; Chen et al., 2021). Let T be a set of topics
in the estimated tree. We define TU as follows:

TU =
1

|T |
∑
ε∈T

(
1

u

u∑
u′=1

1

n(u′, ε)

)
,

where n(u′, ε) is the total number of times that the
u′th top word in topic ε appears in the top u words
across all topics. A higher TU implies that the
topics represent unique themes.

G.2 Average Overlap

Average overlap (AO) measures the average repe-
tition rate of the top u words between the parent
topic and its children (Chen et al., 2021),

AO =
1

|T |
∑
ε∈T

|Vε ∩ Vε′ |
u

,

where Vε is a set of unique words that appear in the
top u words of a node ε. A lower AO indicates that
less overlap occurs between the top words from a
parent and those from its children. Although this
measure was used in Chen et al. (2021), parent and
child topics need some overlapping words to have
semantic coherence; thus, less overlap does not
necessarily mean better interpretability.



Figure 12: The consent form used in the crowdsourced
evaluation. We did not include the contact information
in this screenshot. The Institutional Review Board re-
viewed this consent form.

H Additional Information for the
Crowdsourced Evaluation

H.1 Design

We recruited participants via Amazon Mechanical
Truk and used Qualtrics to prepare our evaluation
tasks. Once participants agreed on the consent
form (Figure 12), they read the instruction before
conducting five tasks (Figure 13). We compensated
the participants through payment ($0.5 to $0.55
per participant). The amount of compensation is
determined to match the federal minimum wage in
the United States.

H.2 Quality Check

The last task was the same as the one the partici-
pants saw in the instruction. We did not include
the participants who failed to answer this quality
check question, because we expected that careful
crowdsourced workers could answer the question
explained in the instruction. Additionally, dropped
those who spent too little (bottom 10%) or too
much (top 10%) time to complete the tasks.

The total number of observations was 535 (Word
Intrusion), 900 (Vertical), and 620 (Horizontal).

Figure 13: An example task.

H.3 An Ethics Review
An institutional review board of an author’s institu-
tion reviewed our experimental design.


