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Abstract

The task of detecting words with semantic dif-
ferences across corpora is mainly addressed
by word representations such as word2vec or
BERT. However, in the real world where lin-
guists and sociologists apply these techniques,
computational resources are typically limited.
In this paper, we extend an existing simulta-
neously optimized model that can be trained
on CPU to perform this task. Experimental re-
sults show that the extended models achieved
comparable or superior results to strong base-
lines in English corpora and SemEval-2020
Task 1, and also in Japanese. Furthermore,
we compared the training time of each model
and conducted a comprehensive analysis of
Japanese corpora.1

1 Introduction

Words can have different meanings at different times
and domains. For example, the word meat means
food in Old English but animal meat in Modern En-
glish; the word interface means a boundary surface,
but in the domain of computer science, it means soft-
ware that allows users to communicate with com-
puters. The task of detecting words with seman-
tic differences provides significant insights into hu-
man language (Kutuzov et al., 2018); for instance,
linguists often discuss the semantic differences be-
tween words in different corpora, such as written
and spoken Japanese (Fujimura et al., 2012), British
and American English (Lei and Liu, 2014), native

1The source code is available at https://github.
com/a1da4/pmi-semantic-difference

Figure 1: Diachronic differences in the meaning of coach
and its neighbors, identified by our extended model.

speakers and learners of English (McEnery et al.,
2019), or web-crawled and traditional corpora in
Czech (Cvrček et al., 2020). Automatic methods
can facilitate such analyses comprehensively, and
can also help lexicographers describe when and how
the meanings of words change substantially.

Recent progress in representation learning has
provided a useful tool for finding semantic differ-
ences in words, known as word embeddings. Figure
1 shows an example of the two-dimensional word
embedding space. In this figure,

−−−→
coach1900s and−−−→

coach1990s are shown in the learned vector space.
The shift in the meaning of the word coach can be
analyzed from the distance between

−−−→
coach1900s and−−−→

coach1990s. Such embeddings are often obtained by
training word vectors independently from the cor-
pora of the 1900s and the 1990s, and then aligning
them (Kim et al., 2014; Kulkarni et al., 2015; Hamil-

https://github.com/a1da4/pmi-semantic-difference
https://github.com/a1da4/pmi-semantic-difference


ton et al., 2016). These alignment-based meth-
ods learn distributional semantic models efficiently
because they use non-contextual word representa-
tions, such as word2vec (Mikolov et al., 2013).
Thus, researchers can easily introduce them with-
out abundant computational resources (Sommerauer
and Fokkens, 2019; Zimmermann, 2019). However,
alignment-based methods are based on the strong as-
sumption that they align word representations from
different time periods or domains linearly to one
another. Recent studies have proposed alignment-
independent methods (Yao et al., 2018; Dubossarsky
et al., 2019), but existing approaches to this task in-
volve the following problems.

First, one of the alignment-independent methods
requires an extensive hyperparameter search. Yao
et al. (2018) proposed a model that did not assume
linear alignments based on simultaneous learning of
word representations. However, as shown later, it
includes three sensitive hyperparameters that need
to be tuned, which incurs a complex combinatorial
optimization problem.

Second, a properly chosen list of target words is
not available in a realistic scenario. Dubossarsky
et al. (2019) proposed a simultaneously optimized
word representation that overcame the abovemen-
tioned problems with another simple but not neces-
sarily correct assumption that words other than the
target word do not change over time. This model,
called Temporal Referencing, is easy to train on
CPU without any assumptions on linear transfor-
mations, and without an extensive hyperparameter
search. However, in the real world, linguists and so-
ciologists may not have a well-selected list of target
words.

Third, only a few studies have quantitatively
compared each method (Schlechtweg et al., 2019;
Shoemark et al., 2019; Tsakalidis and Liakata,
2020; Schlechtweg et al., 2020). The comparisons
have been mainly conducted in European languages
such as English or German; only a few studies
have evaluated these methods in multiple languages
(Schlechtweg et al., 2020) due to the lack of evalua-
tion data. In these analyses, many studies cite target
words whose meanings have clearly changed, such
as the well-known semantic shift of the word gay
(Kim et al., 2014; Kulkarni et al., 2015; Hamilton
et al., 2016; Hu et al., 2019). However, few studies

have focused on semantic changes of more ordinary
words (Gonen et al., 2020).

In this paper, we address these issues. For the
first two problems, we modified Temporal Referenc-
ing. We first considered all the words in the vo-
cabulary as the target words, to reflect more realis-
tic scenarios. We then proposed an extended model
that allows context vectors to change across cor-
pora. For the third problem, we conducted a quanti-
tative comparison between the extended method and
strong baselines not only in English and SemEval-
2020 Task 1 (Schlechtweg et al., 2020), but also in
Japanese. In the experiments, we compared the task
performance and training time of each model. To
address the lack of evaluation data, we used pseudo
words whose meanings were artificially changed
(Rosenfeld and Erk, 2018; Shoemark et al., 2019).
In the analyses, we focused on ordinary words as
well as words with well-known semantic shifts in
Japanese.

The contributions of this paper are as follows.
• We extend the existing simultaneously opti-

mized model that can be trained on CPU re-
garding the real situation.

• Experiments on multiple languages using ac-
tual or pseudo-words show that the extended
methods learn faster and perform similar to or
better than strong baselines.

• We conduct comprehensive analyses, and the
experimental results demonstrate that the ex-
tended method achieves better results for words
with well-known semantic shifts, and de-
tects semantic differences between corpora for
words that are not widely known.

2 Related Work

Semantic differences are often detected by compar-
ing word frequencies between corpora (Fujimura et
al., 2012; Lei and Liu, 2014; McEnery et al., 2019;
Cvrček et al., 2020); however, manually checking
all text to be processed is not a straightforward or
facile task. Therefore, several automatic methods
have been proposed to detect semantic differences
across times or domains.

Several studies have been conducted to detect
synchronic differences using data from social me-
dia. Zhao et al. (2011) compared Twitter and tradi-



tional media based on topic modeling. Aoki et al.
(2017) used word2vec as a language model to de-
tect non-standard usages from context words in web
corpora. Gonen et al. (2020) proposed a metric that
compared the nearest neighbors of each target word
vector and analyzed the differences in word usage
of different age groups on social media. Here, we
focus on methods that capture diachronic meaning
differences.

2.1 Non-contextual word embeddings
The task of detecting diachronic semantic difference
refers to the task of finding words that have differ-
ent meanings in corpora with different time periods
(e.g., SemEval-2020 Task 1). A standard approach
involves the comparison of the vectors of the same
word over different time periods (e.g.,

−−−→
coach1900s

and
−−−→
coach1990s in Figure 1).

Early studies on this task often used count-based
methods to obtain word vectors for each time pe-
riod (Sagi et al., 2009; Cook and Stevenson, 2010;
Gulordava and Baroni, 2011). However, count-
based methods cannot directly model word mean-
ings. Mikolov et al. (2013) proposed word2vec,
which solved the abovementioned problem by em-
bedding word meanings into a vector space. To de-
tect semantic difference between corpora, the vector
spaces for each corpus must be aligned with one an-
other. For this purpose, Kim et al. (2014) proposed
to set the initial word vectors at time t to the corre-
sponding word vectors learned from the corpus for
time t−1 to train a word2vec model at time t. Then,
Kulkarni et al. (2015) and Hamilton et al. (2016)
proposed alignment methods with a linear transfor-
mation and a rotation, respectively. For each target
word w, Kulkarni et al. (2015) used a linear trans-
formation R(w)t7→t+1 to align a target word vec-
tor Wt(w) to an adjacent vector space Wt+1(w).
R(w)t7→t+1 was obtained by solving a piecewise lin-
ear regression among Wt(w)’s k-nearest neighbors
k-NN(Wt(w)):

R(w)
t7→t+1

= argmin
R

∑
s ∈ k-NN(Wt(w))

||Wt(s)R−Wt+1(s)||2F ,

(1)
where || · ||F is the Frobenius norm. Conversely,
Hamilton et al. (2016) introduced a rotation matrix
Rt7→t+1 to map word representations Wt to Wt+1,

which was obtained by solving the orthogonal pro-
crustes problem:

R
t7→t+1

= argmin
R: RRT=1

||WtR−Wt+1||2F . (2)

Alignment-based methods have achieved improved
performance compared to count-based methods
(Schlechtweg et al., 2019). However, they are based
on a strong assumption that word representations are
linearly aligned with one another, which might not
hold in the actual situations.

By contrast, Yao et al. (2018) proposed a model
called Dynamic Word Embeddings (DWE) that re-
laxed the constraint of linear alignment. They did
not use any transformations for learning word rep-
resentations across time periods. Instead, they were
learned simultaneously. The word representations
Wt were obtained by minimizing the following ob-
jective function using context representations Ct

and word-context positive pointwise mutual infor-
mation (PMI) matrices Mt:

1

2

T∑
t=1

||Mt −WtCt||2F +
γ

2

T∑
t=1

||Wt −CT
t ||2F

+
λ

2

T∑
t=1

||Wt||2F +
τ

2

T−1∑
t=1

||Wt+1 −Wt||2F

+
λ

2

T∑
t=1

||Ct||2F +
τ

2

T−1∑
t=1

||Ct+1 −Ct||2F , (3)

where γ, λ, and τ are hyperparameters. The param-
eters γ and τ control the strengths of alignments,
and λ controls the strength of regularization. This
model assumes that the vectors of the same word
in the same time period (Wt,C

T
t ) were close; the

vectors of the same word at adjacent time points
(Wt,Wt+1), (Ct,Ct+1) were also close. There-
fore, the model was sensitive to hyperparameters,
and an extensive hyperparameter search was re-
quired.

2.2 Contextual word embeddings
Contextual word embeddings, such as BERT (De-
vlin et al., 2019), can also be used for the task
of semantic difference detection. However, meth-
ods based on contextual word embeddings have
been reported to exhibit lower performance than
those based on non-contextual word embeddings in



Figure 2: Overview of PMI-SVD (Levy and Goldberg,
2014) that acquires a word representation W from the
matrix factorization of a PMI matrix by SVD.

the SemEval-2020 Task 1 (Kutuzov and Giulianelli,
2020; Martinc et al., 2020b). Contextual word em-
beddings are mainly used for polysemous word anal-
ysis over time, which cannot be performed using
non-contextual word embeddings. Hu et al. (2019)
trained each usage-level vector of each word from
example sentences in a dictionary using BERT. They
tracked each sense of polysemous words, such as
gay, which can mean either carefree or homosexual
depending on context. Instead of using dictionaries,
Giulianelli et al. (2020) performed k-means cluster-
ing on all token-level vectors obtained by BERT.
Their method also provided semantic transitions of
polysemous words without any lexicographic super-
vision.

3 Method: Jointly Optimized Word
Representations

Base idea: Temporal Referencing As described
in Section 2.1, existing methods involve two prob-
lems. First, alignment-based methods (Equations
(1) and (2)) are based on the strong assumption that
word representations from different periods or do-
mains can be linearly aligned to one another. Sec-
ond, DWE (Equation (3)) incurs optimizing com-
binatorial number of its hyperparameters. To ad-
dress these problems, Dubossarsky et al. (2019) pro-
posed a jointly optimized word representation called
Temporal Referencing. This method is based on an
assumption that words other than the target word
do not change over time. Given a target word
list L = {w1, w2, ..., w|L|}, the authors trained a
model by distinguishing the target words over time
{wi

1, ..., w
i
t, ..., w

i
T |wi ∈ L}. However, in the real

world, there is often no list of well-chosen target
words. In this paper, we propose two extensions

to Temporal Referencing: (1) considering all words
in the vocabulary as target words, and (2) allowing
context vectors to change across corpora.

Base model: PMI-SVD We first explain the un-
derlying model introduced by Levy and Goldberg
(2014). They show that the model of skip-grams
with negative sampling (SGNS) (Mikolov et al.,
2013) is equivalent to the factorization of a ma-
trix consisting of PMI between each word and its
surrounding context words, as shown in Figure 2.
Let p(w), p(c), and p(w, c) denote empirical prob-
abilities of word w, context word c, and their co-
occurrence, respectively. Word representations can
be learned as follows. First, a PMI matrix2 M ∈
RW×C (W and C indicate the total numbers of tar-
get words and context words, respectively) is com-
puted.

M[w, c] = max

(
log

p(w, c)

p(w)p(c)
, 0

)
(4)

Then, M is decomposed as M = UΣVT through
singular value decomposition (SVD), where U and
V are orthogonal matrices, and Σ is a diagonal
matrix consisting of singular values of M. Based
on this factorization, a d-dimensional matrix W ∈
RW×d of word vectors and a matrix C ∈ Rd×C

of context vectors are obtained by M = WC as
shown in Figure 2, where W and C are computed
by W=UΣ1/2 and C=Σ1/2VT.

PMI-SVDjoint: To modify Temporal Referenc-
ing, we consider all words in the vocabulary as target
words. We assume that the context vectors repre-
sented by each column in C are fixed across corpora
A and B, in line with the existing approach. Based
on this assumption, we can perform matrix factor-
ization on M = [MA;MB], which are vertically
stacked PMI matrices MA and MB for corpora A
and B (Figure 3(a)).[

MA

MB

]
=

[
WA

WB

] [
C
]
. (5)

2SGNS has been shown to be equivalent to a shifted version
of PMI. However, because Levy et al. (2015) showed that it had
no performance benefit in the case of PMI matrix factorization,
we simply discarded the shift and used the original PMI.



(a) PMI-SVDjoint (b) PMI-SVDc

Figure 3: Overview of the slightly modified Temporal Referencing (Dubossarsky et al., 2019) (left) and the extended
model (right). They acquired word representations WA and WB for each corpus using the matrix factorization of
PMI matrices by SVD.

PMI-SVDc: The method introduced above is
based on the assumption that context word vectors
remain unchanged across corpora. We relax this as-
sumption to propose a model that allows the vec-
tors of context words to change, as in Figure 3(b).
In contrast to PMI-SVDjoint, context representations
CA and CB are also computed in the decomposition
of the stacked PMI matrix M. One straightforward
method to obtain word and context embeddings is to
factorize My in each corpus y. However, the word
vectors obtained for different corpora would not cor-
respond to each other. Hence, we added an addi-
tional constraint that the context representations of
adjacent corpora are close to each other. Therefore,
the objective function used to obtain word represen-
tations Wy is as follows:∑
y∈{A,B}

‖My −WyCy‖F + τ‖CB −CA‖F , (6)

where τ is the only hyperparameter that controls the
strength of the constraint. This model seems close
to DWE, but our model has only one hyperparam-
eter, whereas DWE has three hyperparameters with
an exponential number of combinations. Moreover,
we show later that PMI-SVDc achieved the same or
better performance experimentally than DWE, yet it
runs several orders of magnitude faster than DWE.

4 Preliminary Experiment: Detecting
Semantic Change from a List of Words

We performed the SemEval-2020 Task 1 using PMI-
SVDc. The SemEval-2020 Task 1 has two sub-
tasks: one is a binary classification task that detects

Task Oracle PMI-SVDc

Classification

Avg 0.713 0.645 (5)
En 0.676 0.649 (4)
De 0.750 0.667 (10)

(Accuracy) La 0.650 0.650 (4)
Sv 0.774 0.613 (16)

Ranking

Avg N/A 0.433 (6)
En N/A 0.424 (2)
De N/A 0.597 (9)

(Spearman) La N/A 0.328 (10)
Sv N/A 0.328 (11)

Table 1: Results for the extended model PMI-SVDc in the
SemEval-2020 Task 1. Oracle used an optimal threshold
for classification in each language.

whether or not the meanings of target words have
changed, and the other is a ranking task that sorts
the target words by the degree of change in mean-
ing. Classification was evaluated by accuracy, and
ranking was evaluated using the Spearman’s rank
correlation coefficient. For overall performance, the
average over the four languages (English, German,
Latin, and Swedish) were evaluated.

In our models for SemEval-2020 Task 1, we
mainly used the cosine similarity between two time
periods of each target word. For classification, we
used the average cosine similarity of the target words
as the threshold for each language. We used the op-
timal threshold for classification in each language as
an oracle, similarly to previous reports that used a
test set to adjust hyperparameters. For ranking, the
target words were ranked in ascending order of the
cosine similarity.

From Table 1, we confirmed that our model
worked consistently across the four languages. At



the oracle, the model was able to achieve high per-
formance, with an average score of 0.713.

5 Experiments: Detecting Semantic
Change from All Words

In this section, we describe the experimental setup
and results of quantitative and qualitative evalua-
tions performed on English and Japanese.

5.1 Data and preprocessing

English: We used the Corpus of Historical Ameri-
can English (COHA)3. We selected documents from
the 1900s and 1990s. After removing stopwords and
proper nouns, we chose nouns, verbs, adjectives, and
adverbs that appeared more than 100 times in both
documents, following (Hamilton et al., 2016). We
regarded the chosen words as target words.

Japanese: We used the Corpus of Historical
Japanese (CHJ) and the Showa-Heisei Corpus of
Written Japanese4. We merged these two corpora
and split them into two periods based on World War
II because the Japanese language has changed sig-
nificantly since that war. Target words were selected
similar to the experiments in English.

5.2 Models

We compared the model with minor modifications
(PMI-SVDjoint) and our extended model (PMI-
SVDc) with the following previous methods. For
all non-contextual word representations, we used a
window size of 4, 100 dimensions, and contextual
distributional smoothing of 0.75. Then, we per-
formed a post-processing called all-but-the-top (Mu
and Viswanath, 2018) simultaneously for the repre-
sentation of each period (Kaiser et al., 2021).

Word2Vecalign (Hamilton et al., 2016): We
trained word2vec SGNS models on different time
periods separately. Then, we aligned these models
with a rotation matrix using Equation (2).

PMI-SVDalign (Hamilton et al., 2016): We
trained PMI-SVD models instead. Subse-

3https://www.english-corpora.org/
coha/

4https://ccd.ninjal.ac.jp/chj/
overview-en.html

quently, these models were aligned similarly
with Word2Vecalign.

DWE (Yao et al., 2018): In line with a previous
study, we minimized Equation (3) with block coor-
dinate descent to obtain word representations. To
find the best setting for this model and PMI-SVDc,
a grid search was performed out of seven values
10x,−3 ≤ x ≤ 3 for each hyperparameter by taking
the hyperparameters with the highest AUC.

BERT (Martinc et al., 2020a): Target word vec-
tors in each period were obtained by averaging
usage-level vectors computed by a BERT model.
For both languages, we used pre-trained bert-base-
uncased models published in the Huggingface5.

5.3 Evaluation
To evaluate the proposed approach, we computed
the mean reciprocal rank (MRR) (Kulkarni et al.,
2015; Yao et al., 2018). Each model first ranked
all words in the vocabulary in ascending order of the
cosine similarity between the two periods. Subse-
quently, MRR is computed as the average of the in-
verse of the rank of each word in a reference list
that contains words with known semantic change.
The Spearman’s rank correlation coefficient used in
SemEval-2020 Task 1 could not be used because the
evaluation lists of the words were not annotated with
the degree of semantic change.

To visualize the detection of words with changed
meanings in the reference list, we calculated the
recall with top-k words and a reference list called
Recall@k (Kulkarni et al., 2015).

5.4 Quantitative results on pseudo-words
Settings For a theoretical investigation, we gener-
ated words with semantic changes artificially, sim-
ilar to Shoemark et al. (2019). The pseudo-word
α, whose meaning changes from α to β, was gener-
ated following by replacing of all occurrences of the
word β in the last time period with α and deleting
the original occurrence. In this paper, we randomly
sampled 50 pairs of words whose absolute cosine
similarity of word vectors was 0.01 or less in both
periods. We used 10 words for the hyperparameter
search and the rest for evaluations.

5https://github.com/huggingface/
transformers

https://www.english-corpora.org/coha/
https://www.english-corpora.org/coha/
https://ccd.ninjal.ac.jp/chj/overview-en.html
https://ccd.ninjal.ac.jp/chj/overview-en.html
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


(a) Pseudo-words in English (b) Pseudo-words in Japanese

(c) Actual words in English (d) Actual words in Japanese

Figure 4: Plot of Recall@k for words that have changed semantically. For English and Japanese, reference lists of
words with semantic changes (see text) were employed.

Models English Japanese

PMI-SVDjoint 0.0933 0.0737
PMI-SVDc 0.0870 0.0781

Word2Vecalign 0.0004 0.0022
PMI-SVDalign 0.0010 0.0171
DWE 0.0835 0.0913
BERT∗ 0.0590 0.0776

Table 2: Mean Reciprocal Rank (MRR) in pseudo-words.
*Using external datasets in pre-training.

The extended methods vs. baselines Figures 4(a)
and 4(b) show the Recall@k of each language. Our
models perfectly detected pseudo-words with se-
mantic change in the reference list, as in DWE and
BERT. These figures and MRR (Table 2) show that
our models performed better than or comparable to
the existing models.

Linear alignment The linear alignment (Hamil-
ton et al., 2016) performed poorly in this experiment

Models English Japanese Time

PMI-SVDjoint 0.00186 0.00131 2m58s
PMI-SVDc 0.01045 0.00120 26m01s

Word2Vecalign 0.00040 0.00137 6m22s
PMI-SVDalign 0.00100 0.00091 3m26s
DWE 0.00047 0.00058 30h20m
BERT* 0.00250 0.00163 2h23m

BERT-tiny 0.00100 0.00078 12days
BERT-mini 0.00135 0.00119 2weeks

Table 3: Mean Reciprocal Rank (MRR) in actual words.
The time indicates the training time for each model in the
English experiment. BERT models (BERT-tiny, BERT-
mini) were trained from scratch using diachronic corpora.
*Using external datasets in pre-training.

where the words were completely changed in mean-
ing. Therefore, we conclude that the assumption that
separately trained models can be aligned by a linear
transformation is too strong.



BERT PMI-SVDc

rank word description word description

1 若く comparable, young → young 行い behavior → behavior, execute
2 触れ fall, mention, violate → mention, touch かねて before → before, simultaneous
3 行い behavior → behavior, execute おまけ in addition → in addition, discount
4 公明 fairness → [organization], fairness 無論 [adverb] → [adverb]
5 思い　 thinking, emotion → thinking 年中 year around, officer → year around
6 削除 delete → delete キー music, [person] → music, key
7 在り physical existence → conceptual existence 欠け missing → lack
8 参議 participate → [organization] 皆無 nothing → nothing
9 欠け missing → lack 馬場 [person], turf → [person], turf

10 幼稚 childish → kindergarten, childish 反面 opposite, while → while

Table 4: Top 10 actual words with the smallest cosine similarity that have changed semantically in Japanese. We
excluded single-character words that are less meaningful.

5.5 Quantitative results on actual words

Settings Next, we evaluated each model using ac-
tual words. For English, we used the word sense
change testset6 for the hyperparameter search and
the list of Kulkarni et al. (2015) for the evaluation.
For Japanese, we used the list of words with se-
mantic differences by Mabuchi and Ogiso (2021) for
both the hyperparameter search and the evaluation.

Proposed methods vs. baselines The perfor-
mance is shown in Figures 4(c) and 4(d), and Ta-
ble 3. Overall, the results were worse than those
obtained with the use of pseudo-words. Accord-
ing to these figures and MRR (Table 3), PMI-SVDc

outperformed previous works with the exception of
Word2Vecalign and BERT in Japanese. In addition,
Table 3 shows that PMI-SVDc is computationally
more efficient than DWE and BERT7.

Pre-training BERT from diachronic corpus We
mainly used BERT-base models (12 layers, 768 hid-
den sizes) pre-trained with huge amounts of data. In
this part, we trained BERT models from scratch with
the diachronic corpora used in Section 5.1. Due to
the small amount of diachronic corpora, the avail-
ability of which is limited, we trained BERT-tiny (2
layers, 128 hidden sizes) and BERT-mini (4 layers,
256 hidden sizes) models. Table 3 shows that our
models perform better than BERT-tiny and BERT-
mini when they were trained with the same amount
of data. Moreover, our models required only min-

6https://zenodo.org/record/495572
7The time was measured on a machine with 2 CPUs (Intel

Xeon 2.60 GHz, with a total of 56 cores) and 512 GB of RAM.

utes to hours to train on CPU, as opposed to BERT
models, which require tremendous computational
resources and more than two weeks to train from
scratch.

5.6 Qualitative results

Top-10 words found by BERT and PMI-SVDc
We compared the top-10 words with the highest de-
gree of semantic differences sorted by the cosine
similarity in each of BERT and the proposed method
(PMI-SVDc), which performed the best in a quan-
titative evaluation (Section 5.5). In Japanese, Ta-
ble 4 shows that both methods included ordinary
words with semantic differences like “行い (behav-
ior)” and “欠け (missing).” In particular, BERT
generally captured semantic-level differences, such
as “若く (young),” “触れ (touch),” “在り (ex-
istence),” and “幼稚 (childish),” and PMI-SVDc

captures syntactic-level differences such as “おま
け (in addition)” and “反面 (while).” This may
be attributed to the difference in the window size;
BERT creates a word vector from an entire sentence,
whereas the proposed method creates a word vec-
tor from the information obtained from surrounding
words.

Analyzing (non-)famous words Next, we com-
pared neighbors of each word (Kim et al., 2014;
Hamilton et al., 2016). Again, we compared BERT
and PMI-SVDc. We investigated a famous word “了
解 (understand)” in the list of Mabuchi and Ogiso
(2021) and the ordinary word “欠け (missing)” in
Table 4. Tables 5(a) and 5(b) show the top-5 sim-
ilar words, “了解” and “欠け,” in the prewar and

https://zenodo.org/record/495572


(a) 了解 (understand→consent)
BERT PMI-SVDc

prewar postwar prewar postwar

承諾 承諾 理解 承諾
(consent) (consent) (understand) (consent)
承知 承知 納得 承知
(consent) (consent) (understand) (consent)
納得 承認 推測 納得
(understand) (consent) (estimation) (understand)
理解 同意 判断 同意
(understand) (agreement) (decision) (agreement)
断定 納得 断定 理解
(conclusion) (understand) (decision) (understand)

(b) 欠け (missing→lack)
BERT PMI-SVDc

prewar postwar prewar postwar

マイナス 欠如 切り 有し
(minus) (lack) (cut) (have)
決まり 乏しい 切ら 欠如
(rule) (poor) (cut) (lack)
構え 不足 諦め 富ん
(posture) (lack) (give up) (rich)
重み 崩れ 箸 づけ
(weight) (collapse) (fleeting) (attach)
当て 破れ つける 把握
(aim) (tear) (attach) (grasp)

Table 5: Top-5 similar words for each period. We excluded single-character words that are less meaningful.

the postwar sets using BERT and PMI-SVDc. First,
considering the word “了解,” both methods found
words with the meanings understand (“納得 (un-
derstand),” and “理解 (understand)”) in the prewar,
and consent (“承諾 (consent),” “承知 (consent),”
“承認 (consent),” and “同意 (agreement)”) in the
postwar (Table 5(a)). However, BERT found some
words that have a meaning consent in the prewar
(“承諾 (consent)” and “承知 (consent)”). Second,
in the case of the word “欠け,” both methods yielded
words such as missing (“マイナス (minus),” “切
り (cut),” or “切ら (cut)”) in the prewar, and words
meaning lack (“欠如 (lack)” and “不足 (lack)”) in
the postwar (Table 5(b)). From these results, PMI-
SVDc detected differences in the meanings of words
between corpora, even for word that are not widely
known.

6 Conclusion

We have extended an existing simultaneously op-
timized method to address real-world situations in
which there is no target word list or abundant
computational resources are available for seman-
tic change detection. For a theoretical investiga-
tion, we conducted quantitative evaluations to mea-
sure diachronic meaning differences with pseudo-
and actual word lists in two languages. Experimen-
tal results show that our extended methods can be
learned faster, required less hyperparameter search,
and achieved better or comparable performances
than strong baselines. In the future work, we plan
to apply these models to different domains, such as
books and social media datasets.
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